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Abstract

In this paper, we obtain the asymptotic expansion for the analogue of the bowl-soliton for a
large ‘nondegenerate’ class of fully nonlinear curvature flows. We use this to show the uniqueness
of these bowl-type solitons in their asymptotic class. We also give examples to illustrate the
situation for ‘degenerate’ speeds and how they different they can be. Finally, we show how to
construct ‘wing-like’ solitons for these flows, which are complete, connected translators that are
not graphical, entire or convex. We also obtain asymptotic expansions for them to show the
variety of solutions that one can obtain depending on the choice of speed function.

1 Introduction

Geometric evolution equations for hypersurfaces have seen significant development over the last
few decades. We have witnessed a remarkable growth in this field, leading to the emergence of
intriguing nonlinear partial differential equations. These equations have played a crucial role in
addressing fundamental questions within both mathematics and physics.

In this research, our focus lies on a particular type of evolving hypersurfaces known as ”trans-
lators.” These hypersurfaces in Rn+1 undergo evolution by translation along a fixed unit direction
when subjected to an extrinsic curvature flow, i.e. the normal velocity at each point of the hy-
persurface is a 1-homogeneous smooth symmetric function of their principal curvatures. It’s worth
noting that translators represent a significant class of second-order elliptic partial differential equa-
tions.

More precisely, given an immersed hypersurface Σ0 = F0(Σ) ⊂ Rn+1, a solution to an extrinsic
curvature flow, or f -flow for short, with initial data Σ0 corresponds to a 1-parameter family of
immersions F : Σ× R → Rn+1, that solves

∂F

∂t
(x, t) = f(λ(x, t))ν(x, t), (x, t) in Σ× (0, T ),

F (x, 0) = F0(x),
(1)

where ν(x, t) is the inward unit normal vector of the hypersurface Σt = F (Σ, t) in Rn+1, λ(x, t) =
(λ1(x, t), . . . , λn(x, t)) are the principal curvatures of Σt with respect to to ν(x, t). Here, f : Γ → R
is a smooth function of the principal curvatures of Σt with the following properties:

a) Γ ⊂ Rn is an open symmetric cone that contains the positive cone Γ+ := {λ ∈ Rn : λi > 0}.

b) f is positive and symmetric, i.e.: f(σ(λ1), . . . , σ(λn)) = f(λ1, . . . , λn) for every permutation
σ ∈ Sn.

c) f is strictly increasing in each variable, i.e.:
∂f

∂λi
(λ) > 0 holds for every λ ∈ Γ and i = 1, . . . , n.
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d) f is 1-homogeneous, i.e.: f(cλ) = cf(λ) for every c > 0.

e) f vanishes at boundary of Γ, i.e.: there exist a continous function f̃ : Γ → R such that

f̃
∣∣∣
Γ
= f and f̃

∣∣∣
∂Γ

= 0.

Given a speed function f , a translating solution to Equation (1), or a f-translator for short, is
a solution of the form

F (x, t) = F0(x) + en+1t.

(up to tangential reparametrizations.) Note that by hypotheses (b)) and (c)), the f -flow is invariant
under the isometries of ambient space and parabolic rescalings. Thus there is no loss of generality
in fixing the translation direction to be en+1 = (0, . . . , 0, 1) ∈ Rn+1.

Importantly, translating solutions can be studied by the parabolic and by the elliptic PDE
points of view, since every time slice Σt satisfies the Equation

f(λ) = −⟨ν, en+1⟩ , (2)

recall that ν is the inward pointing unit normal of Σt in Rn+1. In fact, in local coordinates Σt can
be seen as a graph of a function for which Equation (2) correspond to a nonlinear elliptic PDE
(quasilinear when f = H and fully nonlinear when f ̸= H.). Moreover, from the parabolic point
of view, f -translators without boundary are examples of noncompact eternal solutions of Equation
(1), i.e.: solutions that are defined for all t ∈ (−∞,∞), see [10] for details.

It is worth mentioning that f -translators have been widely studied when f = H, see for instance
[4] for a complete survey about H-translators, model of singularities, and minimal surfaces theory.
In addition, the reader will be referred to [11] for existence and properties of α

√
Sn-translators for

α > 0.

In a different work, discussed in [7], the first author explored the existence, uniqueness, regular-
ity, and asymptotic geometry of ”bowl”-type solutions. These solutions are constructed for fairly
general speed functions that are α-homogeneous with α > 0. To be precise, a “bowl”-type solution
of (1) is a complete, strictly convex, rotationally symmetric1 translating graph in Rn+1 which may
be defined in a ball of finite radius or all of Rn.

This dichotomy is characterized by the value of f(0, 1, . . . , 1) and the asymptotic behavior of
the implicit solution of f(x, y, . . . , y) = 1 as y → ∞, i.e. the behavior of the speed function near
the boundary of the positive cone. In addition, when f(0, 1, . . . , 1) > 0, the “bowl”-type solution
is always entire and behaves like a paraboloid at infinity, i.e:

|x|2

2f(0, 1, . . . , 1)
+ o(|x|2), as |x| → ∞.

It is an interesting question what the lower order terms are. When f is the mean curvature, the
authors in [1] showed that the bowl soliton is smoothly asymptotic to

|x|2

2(n− 1)
− ln(|x|) +O(|x|−1), as |x| → ∞. (3)

1This solution is unique among strictly convex rotationally symmetric translating graphs.
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We extend the above result to a large class of speeds which we define below. For convenience, we
denote e := (1, . . . , 1) ∈ Rn−1, the (n− 1)−tuple of 1’s.

Theorem 1.1. Assume that f : Γ → [0,∞) satisfies properties a)-d) and is nondegenerate. Then,
the entire “bowl”-type solution is smoothly asymptotics to

|x|2

2f(0, e)
− ∂f

∂λ1

∣∣∣∣
(0,e)

ln(|x|) +O(|x|−1), as |x| → ∞.

Furthermore, by applying the same techniques employed in [5], we show that that the bowl-type
soliton is essentially unique in the asymptotic class of O(|x|2) solutions via the following theorem:

Theorem 1.2. Let Σ ⊂ Rn+1 be a strictly convex complete f -translator with a single end smoothly
asymptotic to the “bowl”-type solution. Then, if f satisfies properties a)-e) and is nondegenerate,
Σ is the “bowl”-type solution up to vertical translations.

To show that Theorem 1.1 does not apply to all speed functions, we discuss the degenerate
speed function f = n

√
Sn (the nth root of the Gauss curvature) and show that the bowl soliton does

not have quadratic asymptotics for any n ≥ 2.

Theorem 1.3. Let r := |x| be the Euclidean norm of an n-tuple. The “bowl”-type solution for the
speed function f = n

√
Sn is smoothly asymptotic to

r∫
0

e
s2

2 ds+O

(
r∫
0

√
e

s2

2 − 1ds

)
, for n = 2,

r4

12
+O(r), for n = 3,

(n− 2)
n−1
n−2

2(n− 1)
1

n−2

r
2(n−1)
n−2 +O

(
r

2
n−2

)
, for n ≥ 4

, as r → ∞.

Then, we discuss a special kind of translator known as the wing-like solution firstly studied in
the context of mean curvature flows in [1].

Theorem 1.4. For every R > 0, there exist a non-convex complete rotationally symmetric f -

translator WR with respect to xn+1-axis f = k
√
Sk and f =

Sk

Sk−1
such that:

1. For f = k
√
Sk, we distinguish:

(a) When k is even: WR \ BR1(0) with R1 > R posses two graphical branches W+
R ,W−

R :
Rn \BR(0) → R smoothly asymptotic to

W±
R (x) = ±

(
|x|2

2f(0, e)
− ∂f

∂λ1

∣∣∣∣
(0,e)

ln(|x|) +O(|x|−1) + C±

)
, as |x| → ∞.

(b) When k is odd: WR posse a Sn−1 boundary component and WR \ BR1(0) with R1 > R
is given by a vertical graph smoothly asymptotic to

WR(x) =
|x|2

2f(0, e)
− ∂f

∂λ1

∣∣∣∣
(0,e)

ln(|x|) +O(|x|−1) + C, as |x| → ∞.

3



(a) Sk/Sk−1 (b) k
√
Sk for k even (c) k

√
Sk for k odd

Figure 1: Winglike translators for various speed functions

2. For f =
Sk

Sk−1
we have that WR \BR1(0) with R1 > R posses two graphical branches W+

R ,W−
R

such that

W+
R (x) =

|x|2

2f(0, e)
− ∂f

∂λ1

∣∣∣∣
(0,e)

ln(|x|) +O(|x|−1) + C+, as |x| → ∞,

lim
|x|→∞

|∇W−
R (x)| = 0.

Finally, we provide some applications of the above theorems, namely an asymptotic growth
estimate:

Theorem 1.5. Let Σ = {(x, u(x)) : x ∈ Rn} be an entire convex translating solution of (1) such
that f is nondegenerate. Assume furhter, that there exist a, b, C1, C2, R > 0 such that

C1|x|a ≤ u(x) ≤ C2|x|b, for |x| ≥ R, (4)

then, a ≤ 2 ≤ b. In addition, if a = b = 2, then u(x) agrees with the “bowl”-type solution up to
vertical translations.

The organization of this article goes as follows: In Section 2, we discuss the preliminaries of the
differential geometry of axially symmetric translators and the ODE theory needed for the analysis
of the ODE that the translator solves. In Section 3, we derive the asymptotic expansion up to
o(|x|−2) of the slope field of the translator. We use this estimate in Section 4 to prove the unique-
ness result in Theorem 1.2. Section 5 discusses the degenerate example n

√
Sn. Section 6 concerns

the discussion of winglike translators. Finally, in Section 7 we give a proof of Theorems 1.5.
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project PY20-01391 (PAIDI 2020) funded by Junta de Andalućıa FEDER and by the framework of
IMAG-Mar ı́a de Maeztu grant CEX2020- 001105-M funded by MCIN/AEI/ 10.13039/50110001103.
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2 Preliminaries

2.1 The rotational translator ODE

For a real-valued C2-function u of a single real variable we consider Σ to be the graph of y = u(r),
where r = |x| and x ∈ Rn.

Then, the inward unit normal of Σ at a point (x, u(r)) is given by

N⃗ =

(
u′√

1 + u′2
x

r
,

−1√
1 + u′2

)
∈ Rn × R

Moreover, the principal curvatures of Σ are given by

λ1 =
u′′

(1 + u′2)3/2
and λi =

u′

r
√
1 + u′2

, for i = 2, . . . , n. (5)

Definition 1. A speed function is a function f : Γ → R that satisfies properties a)-d). A speed
function f is said to be nondegenerate if f(0, e) > 0, where e = (1, . . . , 1) ∈ Rn−1.

Remark 1. We emphasize that being nondegenerate is equivalent to requiring that the cylinder
Sn−1 × R is not a stationary solution to the f -flow (1).

Example 1. The class of speed functions f : Γ → R that additionally satisfies Property e) is vast
and includes:

• The mean curvature H = λ1 + . . .+ λn, supported in Γ1 = {λ ∈ Rn : H > 0}.

• The k-th roots of the symmetric elemental polynomial k
√
Sk, where

Sk(λ) =
∑

1≤i1<...<ik≤n

λi1 . . . λik ,

supported in the g
◦
ardin cone Γk := {λ ∈ Rn : Sl(λ) > 0, l = 1, . . . , k}.

• The inverse of the k-th harmonic sum

( ∑
1≤i1<...<ik≤n

1

λi1 + . . .+ λik

)−1

supported in Γ =

{λ ∈ Rn : λ1 + . . .+ λk > 0}, where λ1 ≤ . . . ≤ λn.

• Any 1-homogeneous symmetric combination of the above functions.

It is worth to mention that by removing hypothesis e), the Hessian quotients functions Qk,l =(
Sk

Sl

) 1
k−l

supported in Γk can be included in this class of functions.

Remark 2. Due to axial symmetry of Σ, f only depends on two variables (because there are only
two distinct principal curvatures), and hence we sometimes use f(x, y) instead of f(x, ye).

Therefore, by Remark 2 equation

f(λ) = ⟨ν, en+1⟩

5



for a rotationally symmetric graph (x, u(r)) with respect to xn+1-axis is given by

f

(
u′′

(1 + u′2)3/2
,

u′

r
√
1 + u′2

)
=

1√
1 + u′2

.

We can reduced the above equation to a first order ODE by setting v = u′, and with the 1-
homogeneity of f we may write it by

f

(
v′

1 + v2
,
v

r

)
= 1. (6)

Remark 3. Geometrically, v is the gradient of the profile curve (r, u(r)) ∈ R2, and the solution is
unique up to vertical translations.

In addition, since f is strictly monotone in each argument, we may apply the Implicit Function
theorem to obtain a unique function x = g(y, z) in the sense that

f(g(y, z), y) = z. (7)

Note that in Eq. (6), we have z = 1, and in this case, we will suppress the second argument and
refer to g(y, 1) as simply g(y). We will return to using g(y, z) in Section 6.

Moreover, since f is C1 and has a non-singular derivative w.r.t. x, we have that g is of class
C1 as well.

Consequently, the slope function v of a rotationally symmetric f -translators satisfiesv′(r) =
(
1 + v2(r)

)
g

(
v(r)

r

)
, r ≥ 0,

v(0) = 0.
, (8)

and we can recover u(r) from v(r) via an integration procedure.

Remark 4. It is important to mention that even though Equation (8) appears to have a singularity
for the initial condition v(0) = 0, this is only a coordinate singularity.
We refer the interested reader to [7] for a study of general α−homogeneous speeds, where the
questions of existence, regularity, uniqueness, and convexity of this solution are addressed. A
complete classification of speeds based on whether the resulting solution is asymptotically cylindrical
is also presented therein.

Example 2. The following examples are the expressions of the function f(x, y) and g(y) for the
following speed functions:

1. The mean curvature, H:

f(x, y) = x+ (n− 1)y and g(y) = 1− (n− 1)y.

2. The kth-root of the symmetric elemental polynomials, k
√
Sk:

f(x, y) = k

√(
n− 1

k

)
yk +

(
n− 1

k − 1

)
xyk−1 and g(y) =

(
n− 1

k − 1

)−1

y1−k − n− k

k
y.
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3. The quotients of the symmetric elemental polynomials, Qk+1,k =
Sk+1

Sk
:

f(x, y) =

(
n−1
k

)
xyk +

(
n−1
k+1

)
yk+1(

n−1
k−1

)
xyk−1 +

(
n−1
k

)
yk

and g(y) =
n− k

k + 1
y
(k + 1)− (n− k − 1)y

(n− k)y − k
.

2.2 Differentiability properties of nondegenerate f

We are interested in speed function f that satisfies f(0, 1) > 0, in this section and beyond, we
normalize f so that f(0, 1) = 1.

In addition, since f(x, y) is 1-homogeneous, we have the identity

f(x, y) = fxx+ fyy.

where fx = ∂f
∂x and fy = ∂f

∂x .
We note that the partial derivatives fx and fy are 0-homogeneous functions, and by our normal-
ization, we have

fy(0, 1) = 1 (9)

Now, we outline an estimation trick that we will use repeatedly in this paper.
Due to 1-homogeneity of f , we have f(x, y) = yf(x/y, 1):

• When f is C1, using the mean value theorem, we may write

f(x, y) = y(1 + fx(ξ, 1))
x

y
= y + fx(ξ, 1)x (10)

for some 0 ≤ ξ ≤ x

y
.

• When f is C2, Taylor’s remainder theorem yields

f(x, y) = y

(
1 + fx(0, 1)

x

y
+

1

2
fxx(ξ, 1)

x2

y2

)
= y + fx(0, 1)x+

1

2y
fxx(ξ, 1)x

2 (11)

Therefore, by the normalization of f , we will assume in most calculations in this paper that

0 < x ≤ y ⇔ 0 < ξ ≤ 1,

and consequently, |fx(ξ, 1)|, |fxx(ξ, 1)| are bounded by compactness of [0, 1] and the continuity of
these functions.

2.3 Differentiability properties of g

Recall that there exist a unique C1 function g that satisfies f(g(y), y) = 1.

Then, due to our normalization f(0, 1) = 1, we have g(1) = 0. Moreover, by chain rule,

fx(g(y), y)gy(y) + fy(g(y), y) = 0

7



which, by suppressing the arguments, we get

fxgy + fy = 0.

Differentiating once more, we get

fxxg
2
y + 2fxygy + fyy + fxgyy = 0.

Next, we note that whenever fx ̸= 0 it holds

gy = −fy
fx

.

In particular, gy ≤ 0, indicating that g(y) is decreasing.

Remark 5. In particular, when fxx, fxy, fyy are defined at (x, y) = (g(y), y), we have

gyy = −
fxxg

2
y + 2fxygy + fyy

fx
.

Therefore, it is interesting that g will be convex when f is concave and vice versa. However, since
our results do not rely on the convexity properties of f , we won’t be using this fact.

2.4 ODE Theory

Throughout the paper we will use the technique of super-solutions and sub-solutions for an ODE
of the form

x′(t) = f(t, x(t)). (12)

We refer the reader to [9] for the following classic ODE results.

A differentiable function x+(t) satisfying

x′+(t) > f(t, x+(t))

is called a super-solution to (12). Similarly, a differentiable function x−(t) satisfying

x′−(t) < f(t, x−(t))

is called a sub-solution to (12).

Lemma 2.1. Let x+(t), x−(t) be super, sub-solutions of the differential equation x′ = f(t, x) on
[t0, T ) respectively. For every solution x(t) on [t0, T ) we have

x(t) < x+(t), t ∈ [t0, T ) whenever x(t0) ≤ x+(t0)

respectively
x−(t) < x(t), t ∈ [t0, T ) whenever x−(t0) ≤ x(t0)

Remark 6. If one replaces strong inequality by weak inequality in the definitions of sub and super-
solutions, one gets weak inequalities instead of strong ones in the above lemma.
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3 Asymptotic of bowl-type solutions

Recall from the introduction that a bowl-type soliton is a complete strictly convex smooth solution

of (8) with u′ = v, which is defined in [0, R) where R ∈
{

1
f(1,1) ,∞

}
.

Furthermore, by the nondegenerate property together with the normalization f(0, 1) = 1, we
have that R = ∞ and

u(r) = r2 + o(r2), as r → ∞.

In this section we will prove Theorem 1.1 which state:

Theorem 3.1. Assume that f is a normalized nondegenerte speed function. Then, the correspond-
ing bowl-type soliton for this flow has the asymptotics

u(r) =
r2

2
− c log r + o(r−1), as r → ∞,

where c = fx(0, 1).

We will prove the above theorem by showing that v satisfies

v(r) = r − c

r
+ o(r−2), as r → ∞,

whence the claim of the theorem follows at once by integration.

Remark 7. Intuitively, a differentiable solution v to (8) has the symmetries of an odd function, and
hence one does not expect even powers in the asymptotic expansion, and indeed one can formally
plug in a Laurent series for v, and without much effort, one can determine the coefficients of
the asymptotic expansion. In what follows, we provide rigorous proofs for the correctness of these
coefficients.

The method that we will follow consists in a bootstrapping approach to progressively refine the
asymptotic terms. For this, we will use the ODE’s theory of sub- and super-solutions denoted by
w±,ε(r), where the ε will be used in asymptotic little-oh notation.

On the other hand, from Section 2.4, we recall that w is a sub-solution (super-solution resp.)
to Eq. (8) if

w′ ≤ (1 + w2)g(w/r), (≥ resp.).

However, in some cases it may be more convenient to check the following equivalent condition

f

(
w′

1 + w2
,
w

r

)
≤ 1, (≥ resp.). (13)

Proposition 3.2. The functions

w+(r) = r and w−,ε(r) = (1− ε)r

satisfy the following properties:

1. w+(r) is a super-solution to Eq. (8) r > 0.

9



2. For every ϵ ∈ (0, 1), w−,ε(r) is a sub-solution to Eq. (8) for sufficiently large r. Moreover,
given any r0 > 0, there exists r1 > r0 such that v(r1) ≥ r1. Thus, v ≥ (1− ε)r for sufficiently
large r.

Proof. The proofs are all direct computations.

1. Firstly, we note that f(x, y) is increasing in each variable, then it holds

f

(
w′
+

1 + w2
+

,
w+

r

)
= f

(
1

1 + r2
, 1

)
≥ f (0, 1) = 1.

Therefore, w+(r) is a super-solution to Eq. (8) r > 0.

2. Next, by evaluating w−,ε in (6) and taking the limit as r → ∞, we see that

lim
r→∞

f

(
w′
−,ε

1 + w2
−,ε

,
w−,ε

r

)
= lim

r→∞
f

(
1− ϵ

1 + ((1− ε)r)2
, 1− ε

)
= f (0, 1− ε)

< f(0, 1) = 1.

Therefore, the claim is true for sufficiently large r.

On the other hand, we will prove the following part by contradiction. Let r0 > 0 and assume
that v(r) < (1− ϵ)r for all r > r0. Then, since g(y) is decreasing in y, it follows that

v′ = (1 + v2)g
(v
r

)
> (1 + v2)g (1− ε)

= C(1 + v2)

for r > r0 and some C > 0. Consequently, this inequality implies that v blows up at some
finite r1 > r0 contradicting that v(r) exist for all r ≥ 0.

Remark 8. Proposition 3.2 implies that the solution v(r) = r + o(r) as r → ∞.

Proposition 3.3. The function w−,ε(r) = r − ε satisfies:

1. For every ε ∈ (0, 1), w−,ε(r) is a sub-solution to Eq. (6) for sufficiently large r.

2. Given any r0 > 0, there exists r1 > r0 such that v(r1) ≥ r1. Thus, v ≥ r − ϵ for sufficiently
large r.

Proof. 1. We will show that w−ε verifies Eq. (13). Indeed, by Eq. (10), we may write

f

(
w′
−,ε

1 + w2
−,ε

,
w−,ε

r

)
= f

(
1

1 + (r − ε)2
, 1− ϵ

r

)
= 1− ε

r
+

fx(ξ, 1)

1 + (r − ε)2
.

10



Then, since

0 ≤ ξ ≤ 1(
1− ε

r

)
(1 + (r − ε)2)

< 1

for r sufficiently large, we obtain

f

(
w′
−,ε

1 + w2
−,ε

,
w−,ε

r

)
= 1− ε

r
+ o(r−1) < 1.

for sufficiently large r.

2. Next, by arguing by contradiction, we fix r0 > 0 and assume that v(r) < r − ε holds for all
r > r0 and ε ∈ (0, 1).

Then, by part 2 of Proposition 3.2, we have that v ≥ r

2
for sufficiently large r and

v′ = (1 + v2)g
(v
r

)
>

(
1 +

r2

4

)
g
(
1− ε

r

)
.

Finally, recall that g(1) = 0. Then, by the mean value theorem, we have

v′ ≥
(
1 +

r2

4

)(
g(1)− gy (ξ)

ε

r

)
,

for some ξ ∈
(
1− ε

r
, 1
)
. Consequently, since g is decreasing, there is C > 0 depending on ε

such that

v′ ≥ Cr, for all r > r0.

However, this fact contradicts v(r) < r − ε for all r > r0.

Remark 9. Proposition 3.3 implies that v(r) = r + o(1) as r → ∞.

Proposition 3.4. Let c = fx(0, 1) and consider

w+,ε(r) = r − c− ε

r
and w−,ε(r) = r − c+ ϵ

r
.

1. For every ε ∈ (0, c), w+,ε(r) is a super-solution to Eq. (6) for sufficiently large r. In addition,
given any r0 > 0, there exists r1 > r0 such that v(r1) ≤ r1 − c−ε

r1
. Thus, v ≤ r − c−ε

r for
sufficiently large r.

2. For every ϵ > 0, w−,ε(r) is a sub-solution to Eq. (6) for sufficiently large r. Moreover, given
any r0 > 0, there exists r1 > r0 such that v(r1) ≥ r1. Thus, v ≥ r − c+ε

r for sufficiently large
r.

11



Proof. 1. Taking sufficiently large r as in part 2 of Proposition 3.3, but using Eq. 11 instead,
we have

f

(
w′
+,ε

1 + w2
+,ε

,
w+,ε

r

)
= f

(
1 + c−ε

r2

1 + (r − c−ε
r )2

, 1− c− ε

r2

)

≥ f

(
1

1 + r2
, 1− c− ε

r2

)
≥ 1− c− ε

r2
+

fx(0, 1)

1 + r2
+

1

2(1− c−ε
r2

)
fxx(ξ, 1)

1

(1 + r2)2

= 1 +
ε

r2
− c

r2(1 + r2)
+

1

2(1− c−ε
r2

)

fxx(ξ, 1)

(1 + r2)2

≥ 1 +
ε

r2
−O(r−4)

> 1, for sufficiently large r.

For the next part, let r0 > 0 and we assume

v(r) > r − c− ϵ

r
, for all r > r0.

Then, by Proposition 3.2, we have

v′ = (1 + v2)g
(v
r

)
≤ (1 + r2)g

(
1− c− ε

r2

)
,

since g is decreasing.
We note that the second-order expansion of g allows us to write

v ≤ (1 + r2)

(
g(1)− gy(1)

c− ϵ

r2
+

gyy(ξ)

2

c2

r4

)
.

Recall (9), c = fx(0, 1) and g(1) = 0, then we have gy(1) = −c−1 and

v′ ≤ (1 + r2)

(
c− ε

cr2
+

gyy(ξ)

2

c2

r4

)
= (1 + r2)

c− ε

cr2
+O(r−2)

≤
(
1− ε

c

)
+O(r−2).

Therefore, we have obtained v grows no more rapidly than
(
1− ϵ

c

)
r, contradicting that

v(r) > r − c− ε

r
for large enough r > r0.

12



2. Arguing as in the previous part, for sufficiently large r, we have

f

(
w′
−,ε

1 + w2
−,ε

,
w−,ε

r

)
= f

(
1− c+ε

r2

1 + (r − c+ε
r )2

, 1− c+ ε

r2

)

≤ f

(
1

1 + r2
, 1− c− ϵ

r2

)
= 1− c+ ε

r2
+

fx(0, 1)

1 + r2
+

fxx(ξ, 1)

2
(
1− c+ε

r2

) 1

(1 + r2)2

= 1− ε

r2
− c

r2(1 + r2)
+O(r−4)

= 1− ε

r2
+O(r−4)

< 1.

For the next part, we fix r0 > 0 and assume

v(r) < r − c+ ε

r
, for all r > r0.

Then, by part (2) of Proposition 3.3 for sufficiently large r, we have v ≥ r − 1 and hence,

v′ = (1 + v2)g
(v
r

)
≥ (1 + (r − 1)2)g

(
1− c+ ϵ

r2

)
= (1 + (r − 1)2)

(
g(1)− gy (1)

c+ ε

r2
+

gyy(ξ)

2

(
c+ ε

r2

)2
)

≥ (1 + (r − 1)2)

(
c+ ε

cr2
−O(r−4)

)
≥ 1 +

ε

c
+O(r−2).

Therefore, v grows faster than
(
1 +

ε

c

)
r + O(r−1), contradicting v(r) < r − c+ ϵ

r
for large

enough r > r0.

Remark 10. Proposition 3.4 implies v(r) = r − c

r
+ o(r−1) as r → ∞.

Remark 11. The results of Proposition 3.4 were obtained independently in [2].

Proposition 3.5. Let c = fx(0, 1) and consider

w+,ε(r) = r − c

r
+

ε

r2
and w−,ε(r) = r − c

r
− ε

r2
.

1. For every ε ∈ (0, c), w+,ε(r) is a super-solution to Eq. (6) for sufficiently large r. In addition,

given any r0 > 0, there exists r1 > r0 such that v(r1) ≤ r1 −
c

r1
+

ε

r21
. Thus, v ≤ r − c

r
+

ε

r2

for sufficiently large r.

13



2. For every ε > 0, w−,ε(r) is a sub-solution to Eq. (6) for sufficiently large r. Moreover, given

any r0 > 0, there exists r1 > r0 such that v(r1) ≥ r1 −
c

r1
− ε

r21
. Thus, v ≥ r − c

r
− ε

r2
for

sufficiently large r.

Proof. 1. Indeed, as in the previous proof for sufficiently large r, we have

f

(
w′
+,ε

1 + w2
+,ε

,
w+,ε

r

)
= f

 1 + c
r2

− 2ε

r3

1 +
(
r − c

r
+

ε

r3

)2 , 1− c

r2
+

ε

r3


≥ f

1 +
c

r2
− 2ε

r3

1 + r2
, 1− c

r2
+

ε

r3



≥ 1− c

r2
+

ε

r3
+

c

1 + r2

(
1 +

c

r2
− 2ε

r3

)
+

fxx(ξ, 1)

2

(
1 +

c

r2
− 2ε

r3

)2

(
1 +

c

r2
− ε

r3

)
(1 + r2)2

= 1 +
ε

r3
−O(r−4)

≥ 1.

For the next part, fix r0 > 0 and suppose v(r) > r− c

r
+

ε

r2
for all r > r0. Then, by recalling

that g(1) = 0, gy(1) = −c−1, we obtain

v′ = (1 + v2)g
(v
r

)
≤ (1 + r2)g

(
1− c

r2
+

ε

r3

)
≤ (1 + r)2

(
g(1)− gy(1)

( c

r2
− ε

r3

)
+

gyy(ξ)

2

( c

r2
− ε

r3

)2)
≤ 1− ε

cr
+O(r−2).

However, this contradicts v(r) > r − c

r
+

ε

r2
for all r > r0.

2. As in part one for sufficiently large r, we have

f

(
w′
−,ε

1 + w2
−,ε

,
w−,ε

r

)
= f

 1 +
c

r2
+

2ε

r3

1 +
(
r − c

r
− ε

r2

)2 , 1− c

r2
− ε

r3


≤ 1− ε

r3
+O(r−4)

≤ 1.

On the other hand, fix r0 > 0 and we assume that v(r) < r− c

r
− ε

r2
for all r > r0. Then, by

14



Part 2 of Proposition 3.4 for sufficiently large r, we have v > r − 2c

r
and hence,

v′ =
(
1 + v2

)
g
(v
r

)
v′ ≥

(
1 +

(
r − 2c

r

)2
)
g
(
1− c

r2
− ε

r3

)
≥ 1 +

ε

cr
−O(r−2).

However, this contradics v(r) < r − c

r
− ε

r2
for large enough r > r0.

Remark 12. In the above proposition we have proven Theorem 1.1, v(r) = r − c

r
+ o(r−2).

Remark 13. By following this process further with the speed functions f = Qk+1,k =
Sk+1

Sk
, we

obtained the following expression for the “bowl”-type solution

v(r) = r − c

r
+

n2(n− k − 1)(n− k − 4)

(k + 1)3(n− k)2
1

r3
+O(r−5).

Note that when k = 0, Qk+1,k = H and this expression coincide with the one obtained in [1].

4 Uniqueness of entire solutions

With the fine asymptotic information about the bowl-type solitons that we have obtained so far,
we can now demonstrate the uniqueness result for entire strictly convex solutions of (2) that are
smoothly asymptotic to the “bowl”-type solution for nondegenerate speed f .

To this end, we will recall a tangential principle for f -translators in Rn+1 developed by the
second author in [10].

Theorem 4.1. Let Σ1,Σ2 ⊂ Rn+1 be two complete, embedded, connected f -translators such that

1. f : Γ → (0,∞) satisfies properties a)-d).

2. Σ1 is strictly convex, i.e: the principal curvatures λ ∈ Γ+.

3. Σ2 is convex, i.e: the principal curvatures λ ∈ Γ+ .

Then,

1. Assume that there exists an interior point p ∈ Σ1 ∩ Σ2 such that the tangent spaces coincide
at p. If Σ1 lies at one side of Σ2, then both hypersurfaces coincide.

2. Assume that the boundaries ∂Σi lie in the same hyperplane Π and the intersection of Σi with
Π is transversal. If Σ1 lies at one side of Σ2 and there exist p ∈ ∂Σ1 ∩ ∂Σ2 such that the
tangent spaces to Σi and ∂Σi coincide, then both hypersurfaces coincide.

Proof. See [10] Theorem 1.4 for a proof and an additional remark.
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Remark 14. We would like to highlight that the hypotheses of the Tangency Principle can be
modified by the followings:

1. Γ ⊂ Rn is the connected component of {λ ∈ Rn : γ(λ) > 0} containig Γ+ and it is a convex
cone.

2. f : Γ → R is smooth and symmetric and satisfies properties c)-d).

3. The principal curvatures of Σ1 lies in Γ and the principal curvatures of Σ2 lies in ∂Γ ∩{
∂f
∂λi

> 0
}
.

The reason of this is that the proof is based on a convex combination argument of the local graphs
near a tangency point of the hypersurfaces. An in particular, by shrinking the domain if it necessary,
the principal curvatures of the convex combination is an admissible family for the functional f(λ)−
⟨ν, en+1⟩, where a Hopf’s maximum principle holds. We refer the reader to Thm. 1.1 in [3] for
details.

Definition 2. Let Σ be an entire translating graphs that satisfies Equation (1). Then, the end of Σ
is smoothly asymptotic to the “bowl”-type soliton if Σ can be expressed outside a ball as a vertical
graph of a function uΣ such that

uΣ(x) =
|x|2

2
− c

2
ln(|x|2) +O

(
|x|−1

)
, as |x| → ∞. (14)

Note that the normalization f(0, 1) = 1 is used and c :=
∂f

∂λ1
(0, 1).

Remark 15. As is noted in [10] (see sec. 4), Equation (2) is invariant under rotation fields that
fix the xn+1-axis in Rn+1. Consequently, under the hypothesis of Theorem 1.2, it is enough to show
that Σ is symmetric along the plane {x1 = 0} to obtain that Σ is rotationally symmetric.

We will now use Alexandrov’s moving plane method to establish uniqueness. To this end, we
recall the following definitions used in [5] and [6]:

• Πt :=
{
x ∈ Rn+1 : p(x) = t

}
, where p(x1, . . . , xn+1) = x1 is the projection onto the first

coordinate. In addition, Π := Π0.

• Zt := {xn+1 > t}.

• Let A ⊂ Rn+1 be an arbitrary subset. Then we set A+(t) := {x ∈ A : p(x) ≥ t}, A−(t) :=
{x ∈ A : p(x) ≤ t} and δt(A) := A ∩ Πt. Note that A+(t) and A−(t) are the right hand side
and the left hand side, respectively, along Πt of A (see Definition 3 given below).

• The 1-parameter families of right (respectively, left) reflections of A, respectively, along the hy-
perplane Πt are given by A∗

+(t) :=
{
(2t− x1, x2, . . . , xn+1) ∈ Rn+1 : (x1, . . . , xn+1) ∈ A+(t)

}
(respectively, A∗

−(t) :=
{
(2t− x1, x2, . . . , xn+1) ∈ Rn+1 : (x1, . . . , xn+1) ∈ A−(t)

}
).

• We denote by π : Rn+1 → Π0 ⊂ Rn+1 the orthogonal projection given by π(x1, . . . , xn+1) =
(0, x2, . . . , xn+1).

Definition 3. Let A,B be two subsets of Rn+1. Then, it will be said “A is on the right side of B”
(denoted by B ≤ A) if, and only if, for every x ∈ Π = {x1 = 0} such that

π−1({x}) ∩A ̸= ∅ and π−1({x}) ∩B ̸= ∅,
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we have that

sup
{
p(p) : p ∈ π−1({x}) ∩B

}
≤ inf

{
p(p) : p ∈ π−1({x}) ∩A

}
. (15)

Remark 16. The proof of Theorem 1.2 uses the method of moving planes of Alexandrov in the
spirit of [8], [5] and [6]. This method specifically requires three properties to be applied:

• A family of hyperplanes as translating solutions of Equation (2). To accomplish this, the
Property e) on f is needed.

• Tangential principles in the interior and at the boundary, since we will need to understand
how the translators intersect tangentially with their reflections along Πt.

• “Enough space” to start the method. This means that we can find t > 0 large enough such that
the reflection of Σ along Πt is a graph over Π and Σ−(t) ≤ Σ∗

+(t). To compare the horizontal
distance between Σ∗

+ and Σ−, we will need the asymptotic behavior of the “bowl”-type solution
at infinity.

Next, we will follow the arguments used in [6] theorem 6, for f -translators which are smoothly
asymptotic to the “bowl”-type solution.

Lemma 4.2. There exists r0 > R such that Σ+(t) is a graph over Π for every t > r0.

Proof. Firstly, we note that for every t > R, Σ+(t) possess only one unbounded connected compo-
nent. If this were false, one could choose a compact component Σ′ ⊂ Σ+(t) and a t large enough
such that Σ ∩ Πt = ∅. Then, by translating Πt until it touches Σ′ at a first order contact point2,
say Σ′ ∩ Πt′ = {p} for some 0 < t′ < t, Theorem 4.1, applied to Σ′ with Πt′ , implies that Σ′ is
totally geodesic contradicting that Σ′ is strictly convex.

Next, by Equation (14), we have

dxuΣ(e1) ≥
(
1− C

|x|2

)
⟨x, e1⟩ ,

for some constant C > 0 and |x| ≥ R. Therefore, by choosing r0 > R large enough such that

1 − C

|x|2
≥ ε > 0, it follows that dxuΣ(e1) > 0 whenever ⟨x, e1⟩ ≥ r0. Finally, Lemma 4.2 follows

since Σ is properly embedded and Σ+(r1) ∪ π (Σ+(r1)) bounds a domain in Rn+1.

From Lemma 4.2, it follows that Σ∗
+(t) ∩ ZR is a vertical graph of a function satisfying

u∗Σ(x) = uΣ(2t− x1, x2, . . . , xn)

for any t > r0 .

Lemma 4.3. Let a > 0. There exists r1 > r0 such that for |x| ≥ r1 and t > a+ x1 we have

u∗Σ(x)− uΣ(x) ≥ ϵ,

for some ϵ > 0.

2First, this is possible because the first-order contact point coincides with the point at which the two hypersurfaces
first touch. In addition, the first order contact point means that the graph and gradient coincide. In particular, the
tangent planes coincide because the unit normal vectors of the two hypersurfaces coincide at this point.
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Proof. The proof follows the same method as in [5] Step 3 Theorem A.

From Lemma 4.3 we have that for every a > 0 and t ≥ r1

Σ−(t+ a) ∩ {x1 ≤ t} ≤ Σ∗
+(t+ a) ∩ {x1 ≤ t} .

Moreover, since Σ+(t) is a graph over Π for t ≥ r1, it follows that

Σ−(t+ a) ∩ {t ≤ x1 ≤ t+ a} ≤ Σ∗
+(t+ a) ∩ {t ≤ x1 ≤ t+ a} .

In conclusion, by setting

A :=
{
t ∈ [0,∞) : Σ+(t) is a graph over Π and Σ−(t) ≤ Σ∗

+(t)
}
,

we see that A ≠ ∅ since t+ a ∈ A for t ≥ r1.

Proof of Theorem 1.2. Firstly, by the Remark 15 it is only necessary to prove that Σ is symmetrical
about the hyperplane Π = {x1 = 0}. Moreover, by the lemmas 4.2 and 4.3, the set

A =
{
t ∈ [0,∞) : Σ+(t) is a graph over Π and Σ−(t) ≤ Σ∗

+(t)
}
,

is not empty. Then, we apply the same arguments as in [5] to obtain A is closed and open subset of
[0,∞). Consequently, A = [0,∞), which means 0 ∈ A. In fact, we have obtained Σ−(0) ≤ Σ∗

+(0),
and by analogous arguments, it can be shown that Σ∗

−(0) ≤ Σ+(0). Note that the combination of
these two properties implies that Σ is symmetric with respect the hyperplane Π.

5 A Degenerate Example: n
√
Sn.

As seen in the previous section, the asymptotic behavior of the “bowl”-type solution is that of a
paraboloid when the velocity function is nondegenerate.

In this section we will show that the situation can be very different for nondegenerate speeds,
taking as an example the function n

√
Sn.

Theorem 5.1. The slope of the “bowl”-type n
√
Sn-translator is given by

v(r) =



e
r2

2 +O

(√
e

r2

2 − 1

)
, for n = 2,

r3

3
+O(1), for n = 3,(

n−2
n

) 1
n−2 r

n
n−2 +O

(
1

r
n

n−2

)
, for n ≥ 4.

, as r → ∞

The proof of this theorem will be split into the following propositions. First, recall that the
slope of the “bowl”-type n

√
Sn-translator satisfies the ODEv′ = (1 + v2)

(r
v

)n−1
,

v(0) = 0.
(16)

We start with the case of n = 2.
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Proposition 5.2. For n = 2 the smooth solution to (16) satisfies

v(r) = e
r2

2 +O

(√
e

r2

2 − 1

)
, as r → ∞.

Proof. Firstly, for n = 2, we note that Equation (16) has the form

v′ = (1 + v2)
r

v
. (17)

Therefore, v =

√
e

r2

2 − 1 for r > 0. Then, Proposition 5.2 holds by the explicit expression of the
solution.

Proposition 5.3. For n = 3 the smooth solution to (16) satisfies

v(r) =
r3

3
+O(1), as r → ∞.

Proof. For n ≥ 3, Equation (16) can be solved implicitly by

vn−2

n− 2
−

v∫
0

tn−3

1 + t2
dt =

rn

n
. (18)

Particularly, for n = 3, we have the implicit equation

v − arctan(v) =
r3

3
.

On the other hand, the function f(x) = x− arctan(x) has the following asymptotic expansion

f(x) = x− π

2
+O(x−1), as x → ∞.

Then, an easy calculation reveals that f−1(x) has the following asymptotic given by

f−1(x) = x+
π

2
−O(x−1), as x → ∞.

Consequently, we obtain that the asymptotic expansion of v is given by

v(r) =
r3

3
+

π

2
−O(r−3), as r → ∞.

Proposition 5.4. For n > 3, the asymptotic behavior of the solution to (16) is given by

v(r) =

(
n− 2

n

) 1
n−2

r
n

n−2 +O

(
1

r
n

n−2

)
, as r → ∞.

Proof. The proof is divided in several steps.

Step 5.1. v(r) ≥
(
n− 2

n

) 1
n−2

r
n

n−2 for r > 0.
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Firstly, we are going to show that the function w(r) =

(
n− 2

n

) 1
n−2

r
n

n−2 is a sub-solution to

Eq. (16) for r ≥ R(n) :=

(
n− 2

2

)n−2
2

. Indeed, we note that

w′ − (1 + w2)
( r

w

)n−1

=

(
n

n− 2

)n−3
n−2

r
2

n−1 −

(
1 +

(
n− 2

n

) 2
n−2

r
2n
n−2

)(
n− 2

n

)− (n−1)
n−2

r
−2(n−1)

n−2

= − 1(
n− 2

n

)n−1
n−2

r
2(n−1)
n−2

< 0.

Since w(0) = v(0) = 0, we get v(r) ≥ w(r) for all r ≥ R(n).

Step 5.2. For n > 3, v(r) =

(
n− 2

n

) 1
n−2

r
n

n−2 + o
(
r

n
n−2

)
as r → ∞.

We argue by contradiction which means there exists ε > 0 such that for all r0 ≫ 1 it holds

(1 + ε)w(r) ≤ v(r), for all r ≥ r0.

In particular,

v′ = (1 + v2)
(r
v

)n−1
≤ rn−1w−(n−3)

(1 + ε)n−1
=

1

(1 + ε)n−1

(
n− 2

n

)−n−3
n−2

r
2

n−2 .

Then, by the previous step, we have(
n− 2

n

) 1
n−2

r
n

n−2 ≤ v ≤
(
n−2
n

) 1
n−2

(1 + ε)n−1
r

n
n−2 .

Note that this is impossible since ε > 0. Consequently, v(r) = w(r) + o
(
r

n
n−2

)
for r → ∞.

Next, since v(r) =

(
n− 2

n

) 1
n−2

r
n

n−2 + o(r
n

n−2 ) as r → ∞, we can find a non-negative function

φ(r) with the following property: for every C > 0 and all r ≫ 1 it holds |φ(r)| ≤ Cr
n

n−2 and

v(r) =

(
n− 2

n

) 1
n−2

r
n

n−2 + φ(r), for r ≥ r0.

In addition, φ satisfies the following equation

φ′ = v′ −
(

n

n− 2

)n−3
n−2

r
2

n−2

=

1 +

((
n− 2

n

) 1
n−2

r
n

n−2 + φ

)2
 rn−1((

n− 2

n

) 1
n−2

r
n

n−2 + φ

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2 .
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Step 5.3. φ → 0 as r → ∞.

We argue by contradictions, this means there exist ε > 0 such that for all r0 ≫ 1 and every
C > 0 it holds

ε ≤ φ(r) ≤ Cr
n

n−2 , for all r ≥ r0.

In particular, by letting C → 0 in

φ′ =

1 +

((
n− 2

n

) 1
n−2

r
n

n−2 + φ

)2
 rn−1((

n− 2

n

) 1
n−2

r
n

n−2 + φ

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2

≤

1 + r
2n
n−2

((
n− 2

n

) 1
n−2

+ C

)2
 rn−1((

n− 2

n

) 1
n−2

r
n

n−2 + ϵ

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2

=

( n

n− 2

)n−1
n−2

((
n− 2

n

) 1
n−2

+ C

)2

−
(

n

n− 2

)n−3
n−2

 r
2

n−2

−
(n− 1)

(
n

n− 2

) n
n−2

((
n− 2

n

) 1
n−2

+ C

)2

ϵ

r
+O

(
1

r
(n−1)
(n−2)

)
,

we observe that

φ′ ≤ −(n− 1)

(
n

n− 2

)
ε

r
+O

(
1

r
(n−1)
(n−2)

)
≤ 0.

Therefore, φ is strictly decreasing but this contradicts that ε ≤ φ.

Step 5.4. φ ≥
(

n

n− 2

) 1
n−2 1

r
n

n−2

for large enough r.

Let r1 ≫ 1 and C > 0 such that

0 ≤ φ(r) ≤ Cr
n

n−2 , for all r ≥ r1.

Then, we may estimate φ by letting C → 0 in the following expression

φ′ =

1 +

((
n− 2

n

) 1
n−2

r
n

n−2 + φ

)2
 rn−1((

n− 2

n

) 1
n−2

r
n

n−2 + φ

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2

≥
1 + r

2n
n−2

(
n−2
n

) 2
n−2

r
2(n−1)
n−2

((
n−2
n

) 1
n−2 + C

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2 .

=

 (
n−2
n

) 2
n−2((

n−2
n

) 1
n−2 + C

)n−1 −
(

n

n− 2

)n−3
n−2

 r
2

n−2 +
1((

n−2
n

) 1
n−2 + C

)n−1

r
2(n−1)
n−2

.
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Therefore, we have that

φ′ ≥
(

n

n− 2

)n−1
n−2 1

r
2(n−1)
n−2

, as r → ∞.

Then, by integrating form r to ∞ we finally obtain

φ ≥
(

n

n− 2

) 1
n−2 1

r
n

n−2

.

Step 5.5. φ = O

(
1

r
n

n−2

)
.

We note that for r0 ≫ 1 it holds(
n

n− 2

) 1
n−2 1

r
n

n−2

≤ φ(r) ≤ Cr
n

n−2 , for all r ≥ r0.

Next, by letting C → 0 in

φ′ =

1 +

((
n− 2

n

) 1
n−2

r
n

n−2 + φ

)2
 rn−1((

n− 2

n

) 1
n−2

r
n

n−2 + φ

)n−1 −
(

n

n− 2

)n−3
n−2

r
2

n−2

≤

1 + r
2n
n−2

((
n− 2

n

) 1
n−2

+ C

)2
 r

2(n−1)2

n−2((
n− 2

n

) 1
n−2

r
2n
n−2 +

(
n

n− 2

) 1
n−2

)n−1

−
(

n

n− 2

)n−3
n−2

r
2

n−2 ,

we deduce that

φ′ ≤ −
(n− 2)

(
n

n− 2

)n−1
n−2

r
2(n−1)
n−2

+O

(
1

r
4(n−1)
n−2

)
.

Finally, by integrating over r to ∞, we obtain

φ ≤
(n− 2)

(
n

n− 2

) 1
n−2

r
n

n−2

.

This concludes the proof of Proposition 16.

Remark 17. We note that the proof of the uniqueness theorem presented in section 4 also applies
for entire strictly convex solutions smoothly asymptotic to the “bowl”-type translators of the n

√
Sn-

flow. To see this, we choose R > 0. Then, the entire n
√
Sn-translator can be written as a vertical

graph uΣ : Rn \BR(0) → R such that

uΣ = h1(r
2) +O

(
h2(r

2)
)
, as r → ∞,
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where |x| = r and

h1(r
2) =



∫
e

r2

2 dr, for n = 2,
1
12r

4, for n = 3,

(n− 2)
n−1
n−2

2(n− 1)n
1

n−2

r
2(n−1)
n−2 , for n ≥ 4.

, h2(r
2) =


∫ √

e
r2

2 − 1dr, for n = 2,

r, for n = 3,
1

r
2

n−2
, for n ≥ 4.

Then, Lemma 4.2 holds for f = n
√
Sn, since

dxuΣ(e1) ≥
(
h′1(|x|2)− Ch2(|x|2)

)
⟨x, e1⟩ ,

and

0 < h′1(|x|2)− Ch′2(|x|2) =


e

|x|2
2 − C

√
e

|x|2
2 − 1, forn = 2

|x|3

3
− C, for n = 3

(n− 1)

(n− 2)
n−3
n−2

|x|
2

n−2 − C

|x|
n

n−2

, for n ≥ 4.

, (19)

for large enough r ≥ R and some positive constants C.

In addition, we have that Lemma 4.3 also holds, since by the mean value theorem, it follows
that

u∗Σ(x)− uΣ(x) = 2(t− x1)
∂uΣ
∂x1

(ξ, x2, . . . , xn),

for some ξ ∈ (x1, 2t− x1) with |x| > r0.

Then, by writing (ξ, x′) = (ξ, x2, . . . , xn), the asymptotic expression of uΣ gives us

2(t− x1)
∂uΣ
∂x1

(ξ, x2, . . . , xn) ≥ 4(t− x1)ξ
(
h′1(|(ξ, x′)|2)− Ch′2(|(ξ, x′)|2)

)
≥ 4ar0(h1(|(ξ, x′)|2)′ − h′2(|(ξ, x′)|2)).

Finally, by choosing r1 ≥ r0 as in (19), the difference h1(|(ξ, x′)|2)′ − h′2(|(ξ, x′)|2) is uniformly
bounded from below. Consequently, the proof of Theorem 1.2 holds.

6 Wing-like translators

An exotic translating solution to the mean curvature is the wing-like translator discussed in [1].
This solution is connected but not graphical, and is rather the union of two graphs each defined on
the complement of a ball Rn−BR. The upper and lower halves are each asymptotic to paraboloids.

In this section, we will discuss the existence and the asymptotic behavior of wing-like transla-
tors for nondegenerate speeds (see definition 1). In particular, we will see that the upper and lower
branches need not always have the same asymptotics.
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More precisely, a wing-like solution is a non-convex rotationally symmetric hypersurface in Rn+1

with compact boundary (possible empty) along the xn+1-axis which is at distance R > 0 from the
origin that satisfies Eq. (2).
Furthermore, by removing a large enough ball from a wing-like solution we have at possible two
branches given by vertical graphs:

• We are going to show that the upper branch is always asymptotic to the “bowl”-type solution.

• Meanwhile, the lower branch has shown different behaviors at infinity with respect to the
speed function f .

In particular, we will show that for the function f = k
√
Sk with k even the lower branch

is asymptotic to symmetric reflection of “bowl” type solution, for k odd, the lower posses
a boundary component, and for the function f = Qk+1,k, the lower branch whose gradient
vanishes at infinity.

Remark 18. We note that the ODE satisfying a rotationally symmetric Qk+1,k-translator has as
solution v = 0, but recall that the horizontal hyperplanes are not vertical translators and that Qk+1,k

is not well defined at 0.

Remark 19. It is an open problem to characterize the dichotomy of the lower branch of wing-like
solutions for any nondegenerate speed f .

Now we will follow the construction given in [1]. Firstly, we will start with the a small non-
convex portion of the wing-like solution.

Step 6.1. Construction of a small portion of the wing-like f -translator as a graph over the xn+1-
axis.

At the point where the tangent space is not orthogonal to en+1, the translator can be represented
locally as a graph of a function r : (a, b) → (0,∞) over the xn+1-axis by⋃

xn+1

r(xn+1) · Sn−1 × {xn+1}.

Note that r(xn+1) represents the radius of the hypersurface given its last coordinate.
Next, we are going to find the ODE the r satisfies. Firstly, at points where the tangent space

is not parallel to en+1, the wing-like f -translator can be described as a graph of a rotationally
symmetric function u(r) over the hyperplane {xn+1 = 0}.

Note that by construction u ◦ r(xn+1) = xn+1, and by the chain rule, we have the following
equations:

u′(r) =
1

r′
and u′′(r) = − r′′

(r′)3
.

Consequently, since a wing-like solution is not convex, Eq. (2) has the form (7). Then, since u
satisfies equation (8), we obtain

r′′ = −(1 + (r′)2)g
(
r−1, r′

)
,

where g
(
r−1, r′

)
= r′g

(
(rr′)−1, 1

)
since g(y, z) is 1-homogeneous. We note that in previous sections

we denote g(y) instead of g(y, 1) to economize notation.
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In addition, at points of the wing-like f -translator where the tangent space is vertical, we may
argue in the same way as before by considering the branches separately.

Finally, we claim that there exists ε > 0 and a strictly convex solution to the problem{
r′′ = −(1 + (r′)2)g

(
r−1, r′

)
, xn+1 ∈ (h0 − ε, h0 + ε),

r(h0) = R, r′(h0) = 0.
, (20)

where h0 ∈ R and R > 0. Note that a different choice of h0 corresponds to a vertical translation of
the wing-like f -translator. Therefore, we will assume that h0 = 0.

Indeed, since Eq. (20) is not degenerate and the he right-hand side is at least of class C2, the
classical theory of ODEs holds. This means that there exist ε > 0 and a solution to Eq. (20) in
(−ε, ε).

Then, by shrinking ε > 0 if necessary, we may assume that this solution is strictly convex. This
is due to continuity and the fact that

r′′(0) = −g
(
R−1, 0

)
> 0.

To see this, we note that by taking derivatives with respect z in Eq.(7), we havefxgz = 1. Then,
since f is strictly increasing, gz(y, z) > 0. Therefore, by recalling that

g(1, 1) = 0 and g(R−1, 0) < 0

the claim holds. Completing the construction of the small portion of the “wing”-like f -translator.

Remark 20. In the particular case of f = k
√
Sk, the ODE that r satisfies is

r′′ = −(1 + (r′)2)

(
(r′)krk−1(

n−1
k−1

) − (n− k)

kr

)
.

Therefore, when k is an even number, we have that r̃ = r(−xn+1) is also a solution to Eq. (20).

Proposition 6.1. The principal curvatures of the upper half small portion of the wing-like f -
translator belong into the cone

{f satisy properties a)− e) and f(0, 1) > 0} .

Proof. Firstly, we note that Eq. (5) implies that

λ1 =
−r′′

(1 + r′2)3/2
and λi =

1

r
√
1 + r′2

.

are the principal curvatures of the small portion of the wing-like f -translator.

Then, by differentiating them

λ′
1 =

−r′′′

(1 + r′2)3/2
+

3(r′′)2r′

(1 + r′2)5/2
and λ′

i =
−r′

r2
√
1 + r′2

− r′r′′

r(1 + r′2)3/2
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Next, we will be evaluate the principal curvatres at u = 03. Differentiating r′′, we have

r′′′ = −2r′r′′g − (1 + r′2)gy
r′

r2
− (1 + r′2)gzr

′′,

where g, gy, gz are all evaluated at the point
(
r−1, r′

)
. Therefore, we obtain

r′′′(0) = −gz
(
R−1, 0

)
r′′(0) = gz

(
R−1, 0

)
g
(
R−1, 0

)
.

Finally, by recalling r(0) = R, r′(0) = 0 and r′′(0) = −g(R−1, 0) < 0, we see that

λ′
1(0) = −gz

(
R−1, 0

)
g
(
R−1, 0

)
> 0, and λ′

i(0) = 0.

Therefore, since in the upper half of the small portion {u > 0}, r is strictly decreasing. We obtain
that λ′

i > 0 for all i = 1, . . . , n finalizing the proposition.

Step 6.2. Construction of the upper branch of the wing-like f -translator.

We have a solution on some interval u ∈ [0, ε). To continue the solution, we may revert to the
standard representation {

v′ = (1 + v2)g
(v
r

)
v(r0) = v0

where we may choose r0 ∈ (R,R + ε) arbitrarily. Then, since v → ∞ as r → R+, we may assume
v0
r0

≥ 1, by choosing r0 sufficiently close to R. By standard ODE theory we have existence and

uniqueness as long as the right hand side is well-defined.

If
v0
r0

> 1, the right hand side of the ODE is initially negative, hence the function decreases

until g
(v
r

)
= 0 (i.e.:

v

r
= 1). So we only need to discuss the case

v0
r0

= 1. If this is the case, then

the function v+ = r is a supersolution to the ODE, and v− =
r

f(1, 1)
is a subsolution, as can be

seen in [7] Section 7.1. The proof that
v

r
→ 1 is just a special case of Proposition 2 of [7].

On the other hand, for the lower branch of the wing-like f -translator, we have a solution on
some interval (−ε, 0]. As with the upper branch, we may revert to the standard representation{

v′ = (1 + v2)g
(v
r

)
,

v(r0) = v0.
,

where r0 ∈ (R,R+ ε). Then, Since v → −∞ as r → R+, we may assume
v0
r0

≤ −1, by choosing r0

sufficiently close to R. By standard ODE theory we have existence and uniqueness as long as the
right hand side is well-defined.

Step 6.3. Construction and asymptotic behavior of the lower branch of the wing-like k
√
Sk-translator

for k even.

3u > 0 is the upper part of the winglike solution and u < 0 is the lower.
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Firstly, by construction the principal curvatures of the small portion of WR are given by

λ1 =
g(r−1, r′)√
1 + (r′)2

=

(r′)krk−1(
n−1
k−1

) − (n− k)

kr√
1 + (r′)2

and λi =
1

r
√
1 + (r′)2

.

Then, since λ ∈ Γk if, and only if,(
n− 1

l

)
λl
i +

(
n− 1

l − 1

)
λ1λ

l−1
i > 0, for l = 1, . . . , k,

or equivalently, we have

0 <

(
n−1
l−1

)
rl(1 + (r′)2)

l
2

(
rg(r−1, r′) +

n− l

l

)
⇔ 0 <

(r′r)k(
n−1
k−1

) +
n(k − l)

kl
.

Consequently, since r′ only vanish at the origin, it follows that the principal curvatures of the small
portion satisfy λ(0) ∈ ∂Γk ∩ Γk−1, or equivalently

λ(0) ∈ ∂Γk ∩
{
∂ k
√
Sk

∂λi
> 0

}
,

and λ(p) ∈ Γk for p ∈ WR \ {0}.

Next, the ODE for f = k
√
Sk is given byv′ = (1 + v2)

(
1(

n−1
k−1

) (r
v

)k−1
− (n− k)v

kr

)
, r ≥ r0,

v(r0) = v0.

(21)

We note that when k is an even number, then the function −v, where v denotes the upper half
solution, is also a solution to (21)4.
In particular, the right hand side of Eq. (21) is always negative and finite. This means the solution
exists for all r ≥ r0, and the asymptotic expression of v for k even is given by

v(r) = − r

k

√(
n−1
k

) +
(
n−1
k

)(
n−1
k−1

)
k k

√(
n−1
k

) 1

r
+O(|x|−2), as r → ∞.

Consequently, the principal curvatures of W−
R do not belong Γk for any k as r → ∞.

Remark 21. It is important to note that when k is odd, the right hand side of Eq. (21) has a
singularity when v = 0. This is because the translator equation 6 can never be satisfied by any
axially symmetric graph that possesses a point where u′ = 0 and r > 0. Thus, if u′ → 0 at some
point r1 > r0, u

′ can never be extended past r1, i.e. such graph will possess a boundary Sn−1.

Step 6.4. Construction and asymptotic behavior of the lower branch of the wing-like Qk+1,k-
translator.

4Recall Remark 20 and the construction of the wing-like solution is by extending the small piece r as the initial
data of Eq. (21) in terms of u with v′ = u.
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(a) Qk+1,k (b) k
√
Sk for k even (c) k

√
Sk for k odd

Figure 2: Profile curves for winglike translators for various speed functions

Firstly, the ODE that r satisfies is

r′′ = −(1 + (r′)2)
(n− k)

(k + 1)r

(
(k + 1)r′r − (n− k − 1)

(n− k)− krr′

)
.

Therefore, the principal curvatures of the small portion of WR are given by

λ1 =
g(r−1, r′)√
1 + (r′)2

=
(n− k)

(k + 1)

(k + 1)r′r − (n− k − 1)

(n− k)− krr′

r
√
1 + (r′)2

and λi =
1

r
√

1 + (r′)2
.

Then, we will have that λ ∈ Γk+1 if, and only if,

0 <
(n− k)

k + 1

(k + 1)rr′ − (n− k − 1)

(n− k)− krr′
+

n− l

l
, l = 1, . . . , k + 1.

Consequently, since

0 <
n− l

l
− n− k − 1

k + 1
⇔ 0 < k + 1− l,

we obtain that λ(0) ∈ ∂Γk+1 ∩ Γk, or equivalently

λ(0) ∈ ∂Γk+1 ∩
{
∂Qk+1,k

∂λi
> 0

}
,

and λ(p) ∈ Γk for p ∈ WR \ {0}.

Next, the ODE for f = Qk+1,k is given by
v′ =

n− k

k + 1
(1 + v2)

v

r

(k + 1)− (n− k − 1)
v

r

(n− k)
v

r
− k

, r ≥ r0,

v(r0) = v0.

, (22)

Firstly, since v → −∞ as r → R+, we may take r0 to be sufficiently close to R so that v0 < 0.
Note that the right hand side of Eq. (22) is positive when v < 0. Thus the solution is increasing as
long as this is the case. On the other hand, v+ = 0 is a solution to the Eq. (22), therefore v and
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v+ cannot coincide which means that v remains negative for all r ≥ r0.

Now we show that v → 0 as r → ∞. Firstly, since v is increasing and bounded above by 0,
L := lim

r→∞
v exists in [v0, 0]. If L ̸= 0, then there exists ε > 0 such that

v

r
<

−ε

r
.

Then, since k < n−1 and the function g(y) =
n− k

k + 1
y
(k + 1)− (n− k − 1)y

(n− k)y − k
is decreasing, we have

v′ ≥ (1 + v2)g

(
−ε

r

)
≥ (1 + v2)

(n− k)ε

kr
.

Therefore, tan

(
(n− k)ε

k
ln(r)

)
= O(v), but this contradicts that v is bounded.

Remark 22. We remark that the asymptotic behavior of the lower branch of the Qk+1,k-translator

cannot decay to 0 faster than
−1

r
n−k
k

(1+ε)
for every ε > 0 and 1 ≤ k.

To see this, let C, ε > 0 and consider wC,ε(r) = −Cr−(1+ε)a where a =
n− k

k
. Then, wC,ε is a

super-solution to Eq. (22) with v(r0) < 0. In fact,

w′(r) =
(1 + ε)aC

r(1+ε)a+1

and the RHS of Eq. (22) is

aC(1 + w2)
1

r(1+ε)a+1

(k + 1)r(1+ε)a+1 + (n− k − 1)

(n− k) + kr(1+ε)a+1

≤ aC(1 + w2)
1

r(1+ε)a+1

≤ w′,

for r > r0, where r0 is sufficiently large. Then, for each ε > 0, we may fix r1 > r0 and then choose
C small enough so that v(r1) < wC,ε(r1). Consequently, we have that wC,ε > v for all r ≥ r1.

Remark 23. By the above remark, we have that the asymptotic behavior of the principal curvatures

of the lower branch at infinity behave as O(−r−a−1), where a =
n− k

k
. Then, it follows that

λ ∈ Γk+1 if, and only if,

0 <

(
n− 1

l

)
(−1)l−1

rl(a+1)

n(k − l)

kl
, holds for l = 1, . . . , k + 1.

Therefore, λ ̸∈ Γk+1 for any k as r → ∞ of the lower branch.

Step 6.5. Finally, the construction of the wing-like solution.

This will be done by extending the small piece r : (−ε, ε) → R in the two branches by plugging
the initial conditions u′ (r(−ε)) =

1

r′(−ε)

u(r(−ε)) = −ε.

u′ (r(ε)) =
1

r′(ε)

u(r(ε)) = ε.

in Equations (21) and (22), respectively.
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7 Application: Growth estimate

In this section we will prove the theorem 1.5, which we repeat here for the convenience of the
reader.

Theorem 7.1. Let Σ = {(x, u(x)) : x ∈ Rn} be an entire convex f -translator for some nondegen-
erate speed f . Assume further, that there exist a, b, C1, C2, R > 0 such that

C1|x|a ≤ u(c) ≤ C2|x|b, for |x| ≥ R,

then, a ≤ 2 ≤ b.
In addition, if a = b = 2, then u(x) agrees with the “bowl”-type solution up to vertical transla-

tions.

Proof. Let assume first that a > 2, and let P be the “bowl”-type f -translator in Rn+1. Recall that
P is an entire strictly convex rotationally symmetric graph smoothly asymptotic to

|x|2

f(0, 1)
− ∂f

∂λ1

∣∣∣∣
λ=(0,1)

ln(|x|) +O(|x|−1).

Next, by translating suitably P over Σ, we can find a t0 > 0 such that P − ten+1 lies strictly
below from Σ for t ≥ t0. Note that this is possible since a > 2. Now, we may translate P − ten+1

upward until touches Σ for the first time. Finally, by the interior tangential principle Theorem 4.1,
we obtain Σ = P , but this contradicts a > 2.

The case b < 2 is analogous, the only change is to place the “bowl”-type soliton above Σ and
move it down until it touches Σ.

Finally, when a = b = 2, then Σ is smoothly asymptotic to P , and by Theorem 1.2, Σ = P up
to a vertical translation.

Remark 24. Theorem 1.5 also holds when the hypotheses of f are changed by the one given in
Remark 14. This means also holds for entire f -translators such that the principal curvatures of the
graph belongs to Γ, and Γ is a convex cone of {f > 0} that contains the point (1, e).
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[10] José Torres-Santaella. “Maximum Principles and Consequences for γ-translators in Rn+1”.
In: arxiv preprint arXiv:2306.03649 (2023).

[11] John Urbas. “Complete noncompact self-similar solutions of Gauss curvature flows. I. Pos-
itive powers”. In: Math. Ann. 311.2 (1998), pp. 251–274. issn: 0025-5831. doi: 10.1007/
s002080050187. url: https://doi-org.utk.idm.oclc.org/10.1007/s002080050187.

31

https://doi.org/10.1007/s002080050187
https://doi.org/10.1007/s002080050187
https://doi-org.utk.idm.oclc.org/10.1007/s002080050187

	Introduction
	Preliminaries
	The rotational translator ODE
	Differentiability properties of nondegenerate f
	Differentiability properties of g
	ODE Theory

	Asymptotic of bowl-type solutions
	Uniqueness of entire solutions
	A Degenerate Example: [n]Sn.
	Wing-like translators
	Application: Growth estimate

