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ROTATIONALLY SYMMETRIC TRANSLATING SOLUTIONS TO

EXTRINSIC GEOMETRIC FLOWS

SATHYANARAYANAN RENGASWAMI

Abstract. Analogous to the bowl soliton of mean curvature flow, we con-
struct rotationally symmetric translating solutions to a very large class of ex-
trinsic curvature flows, namely those whose speeds are α-homogeneous (α > 0),
elliptic and symmetric with respect to the principal curvatures. We show that
these solutions are necessarily convex, and give precise criteria for the speed
functions which determine whether these translators are defined on all of Rn or
contained in a cylinder. For speeds that are nonzero when at least one of the
principal curvatures is nonzero, we are also able to describe the asymptotics
of the translator at infinity.
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1. Introduction

Ancient solutions to geometric flows, i.e. solutions that are defined on a time
interval of the form (−∞, T ),−∞ < T ≤ ∞, are fundamental to understanding the
global behaviour of these flows, because they arise as limits of rescalings near singu-
larities [14]. An important class of singularity models for extrinsic geometric flows
are the translating solutions, so named because they evolve by ambient translation
with constant velocity. Translating solutions arise in the analysis of singularities
directly, as blow-up limits [4, 15], and also indirectly, in the sense that convex
ancient solutions tend to decompose into configurations of asymptotic translators
[5, 6, 8, 9, 10, 11]. In some cases, it can be shown that translating blow-up limits
are necessarily rotationally symmetric [7, 16].

In the present paper, we are interested in translating solutions to a very large
class of extrinsic curvature flows. In particular, we shall prove the existence (and
uniqueness) of bowl-type solitons, that is, complete rotational graphs of class C2
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2 SATHYANARAYANAN RENGASWAMI

over either Rn or a ball BR of radius R centred at the origin, with zero height and
gradient at the origin. For a large class of speeds we also obtain an asymptotic
expansion at (spatial) infinity.

Consider the extrinsic geometric flow

(1)
∂ ~X

∂t
= −f ~N

of a one-parameter family ~X : Mn × I → R
n+1 of immersed hypersurfaces, where

~N denotes the (outward) unit normal field and the speed function f is given by
a function f(κ1, . . . κn) of the principal curvatures κ1 ≤ · · · ≤ κn which is a posi-
tive function defined for positive principal curvatures, monotone increasing in each
variable and α-homogeneous, i.e. f(λz) = λαf(z) for all λ > 0, z ∈ R

n.
We are interested in the following questions: When do bowl-type solitons exist

for this flow? When are these defined on all of Rn, and when are they defined over
bounded domains? What can we say about the asymptotics at infinity? In the
case where f is the mean curvature, Altschuler and Wu [1] proved that bowl-type
solitons do exist. Their approach was to use elliptic PDE theory on general domains
and deduce the rotationally symmetric case as a corollary. Later, Clutterbuck,
Schnürer and Schulze in [12] approached the rotational case directly, studying the
corresponding ODE initial value problem, and were able to give precise asymptotics
of the solution at infinity. Their approach was to use upper and lower barriers to the
ODE solution. Note that this provides an alternative proof of the existence of the
bowl soliton: by constructing a suitable lower barrier, one can solve the Dirichlet
problem over a small ball, and then extend the solution uniquely using the ODE
analysis. This is the approach taken in [3, Theorem 13.38]. Urbas [20] studied
soliton solutions (including bowl-type solitons) to flows by powers of the Gauss
curvature, exploiting techniques from the study of Monge–Ampère-type equations.
Santaella [17, 18] studied translating solutions to flows by ratios Qk = Sk+1/Sk of
consecutive elementary symmetric polynomials Sk in the principal curvatures. In
particular, he constructed a bowl-type soliton for the Qn−1-flow (which is perhaps
better known as the harmonic mean curvature flow). But a study of the general
situation of homogeneous flow speeds has not yet been carried out to our knowledge
(even under additional concavity assumptions on the speed). Indeed, all prior work
focuses on the analysis of specific speed functions. Moreover, in the case of Gauss
curvature flows, the analysis is made simple due to the fact that the resulting ODE
is separable. We will show here that, in fact, general properties of the speed function
already carry a lot of information about the shape of the bowl-type soliton.

We use an approach similar to that of [12]: we seek a function u : I → R (where
I = [0, R), 0 < R ≤ ∞ ) of class C2 such that the graph y = u(|x|) in R

n+1 is a
translating solution to (1), derive the ODE it should satisfy, and analyse it to prove
that such solutions do exist under certain (very general) hypotheses on f . We also
use ODE analysis to work out the asymptotics of u:. In contrast to [12] (or [3]), we
also prove directly, by analysis of the translator ODE, that the solution is of class
C2 up to the origin and smooth elsewhere. PDE theory is only invoked, in the form
of a basic lemma, to infer smoothness at the origin.

For the purposes of the present paper, we make the following definition.

Definition. A C1 function f : Ω ⊂ R
n → [0,∞) such that Ω contains Γn

+ + {x ∈
R

n : zi > 0}, is an admissible speed function if
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• f is invariant under permutation of its variables z1, . . . , zn. (Symmetry)

• ∂f
∂zi

> 0 for each i = 1, . . . , n. (Ellipticity)

• f is α-homogeneous for some α > 0. (Homogeneity)

This is a very large class of speeds. It allows, for example, the commonly studied
class of flows by positive powers of one-homogeneous roots of ratios of elementary
symmetric polynomials in the principal curvatures [2]. Note, moreover, that no
concavity or smoothness conditions beyond C1 are required.

Define e + (1, ..., 1) ∈ R
n−1. We have the following dichotomy for the behaviour

of f at the boundary of the positive cone Γ+: either f(0, e) > 0 or f(0, e) =
0. We call such speeds nondegenerate and degenerate respectively. Note that,
although our domains do not necessarily include the point (0, e), we can define
f(0, e) + lims→0 f(s, e), since f is increasing in all arguments and nonnegative.
Observe that this degeneracy condition corresponds to whether or not the cylinder
Sn−1 × R is a stationary solution of the corresponding flow.

In the nondegenerate case, cylinders collapse into a line in finite time. Therefore,
one does not expect complete translators to be contained in a cylinder, and one
would expect bowl-type solitons to be entire. In the mean curvature case, it was
proved in [12] that the asymptotic expansion of the bowl soliton up to order |x|2 is

u(|x|) = |x|2
2(n−1) + o(|x|2) as |x| → ∞. Our main result shows that this is indeed the

case for any admissible nondegenerate speed and that such an asymptotic expansion
does hold.

Theorem 1.1. Let f be an admissible speed function. There exists a unique bowl-
type soliton for the corresponding flow. It is the graph of a convex radial function
y = u(|x|), where u ∈ C2([0, R)), R ∈ (0,∞]. If f is of class Ck,α, α ∈ (0, 1), then
u ∈ Ck+2,α([0, R)). If f is non-degenerate, then R = ∞ and

u(|x|) = C|x|α+1 + o(|x|α+1) as |x| → ∞ ,

where C +
1

(α+1)f(0,e) .

It is somewhat surprising that the asymptotic expansion in Theorem 1.1 is avail-
able under such general hypotheses on the speed. Indeed, the computation of lower
order terms seems to be much more dependent on the specific form of f .

Our next theorem concerns low homogeneities (regardless of whether they are
degenerate or not.)

Theorem 1.2. If f is an admissible speed function with α ≤ 1/2, then the corre-
sponding bowl-type soliton is entire.

For higher homogeneities, we have examples of both possibilities (entireness or
non-entireness of the corresponding bowl-type soliton), even within the “mean cur-
vature type” setting α = 1. For example, when f(κ1, . . . , κn) = (Σn

i=1κ
−1
i )−1 (har-

monic mean curvature), the solution is defined on a ball, whereas when f(κ1, κ2) =√
κ1κ2, which is the square root of the Gauss curvature, the solution is defined

over R2. In the case where f(κ1, κ2) = κ1κ2 is the Gauss curvature, the solution
is again defined over a ball. This difference is due to the behaviour of x in the
equation f(x, ye) = 1 as y → ∞. In the interest of completeness, we also provide
a partial classification of this phenomenon. Note that since f is strictly increasing
with respect to each of the principal curvatures, the equation f(x, ye) = 1 can be
solved for x in terms of y.
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Figure 1. Level sets of the expression f(x, ye) = 1.

Theorem 1.3. Let f be an admissible speed function with α > 1/2 and f(0, e) = 0.
Consider the constraint equation f(x, ye) = 1. If x → L > 0 as y → ∞, then the
bowl-type soliton corresponding to f is defined on a ball B and is asymptotic to the
cylinder ∂B × R.

We may ask what happens when L = 0. In this case, whether the solution is
entire or over a bounded domain is determined by the rate at which x decays to 0
as y → ∞. Recall that f(t) = O(g(t)) as t → ∞ if there exists C > 0 such that,
for sufficiently large t, |f(t)/g(t)| ≤ C.

Theorem 1.4. Let f be an admissible speed function with α > 1/2 and f(0, e) = 0.
Consider the constraint equation f(x, ye) = 1. Suppose that x → 0 as y → ∞.

(i) If x = O(y−(2α−1)) then the corresponding bowl-type soliton is entire.
(ii) If there exist constants C > 0, k ∈ (0, 2α − 1) such that x ≥ Cy−k for

sufficiently large y, then the corresponding bowl-type soliton is defined over
a bounded domain.

We note here that this theorem does not describe what happens in case x =
O(y−k) for all k < 2α − 1 but x 6= O(y−(2α−1)), for example x = y−2(α−1) log y.
However one usually does not encounter such extreme cases, as f is typically an
algebraic combination of the principal curvatures in most applications.

We will be deducing the above theorems as consequences of the analysis of the
translator ODE, which is an equation of the form

v′ = (1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

,

where v refers to the slope of the profile curve, β depends on α and the function
g depends on f . Since we seek bowl-type solitons, we impose the initial condition
v(0) = 0. As (r, v) = (0, 0) is not in the domain of the right hand side, this
equation has a coordinate singularity at the origin, and hence its solvability near the
origin does not follow from standard ODE theory. However, away from the origin,
local solvability of the equation does follow from the Picard–Lindelöf theorem, and
extensibility of the solution to its maximal interval follows from the existence of
subsolutions and supersolutions to the ODE. (See §2 for a review of the requisite
ODE theory.) We use this fact to construct a sequence of solutions to the ODE
whose initial values converge to (0, 0), and show that the limit of these solutions is
indeed the unique C1−solution to the ODE with initial condition (0, 0). When f
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satisfies the hypotheses of Theorem 1.1, we show that limr→∞
v(r)

r(1+v(r)2)β
converges

to something finite, and thereby deduce the asymptotic expansion of the bowl-type
soliton as |x| → ∞. In the other cases, we are able to infer whether the solution is
entire or not by applying Lemma 2.5.

Acknowledgements. The author would like to thank Dr. Mathew Langford and
Dr. Theodora Bourni of the University of Tennessee, Knoxville for suggesting
this problem, providing guidance in both literature review and in technical aspects
throughout the research phase, proofreading the arguments and offering countless
hours of Zoom advising during a time that made in-person communication challeng-
ing. The author would also like to express his gratitude to the Office of Research and
Engagement of the University of Tennessee for the funding they provided during
Summer 2021.

2. Preliminaries

2.1. ODE initial value problems. We review the basics of ODE theory and some
of the tools used in this paper. We use [19] as a reference for this theory. The form
of ODE most amenable to analysis is

(2) x′ = f(t, x) .

Here, x is an unknown (Rn-valued) function of t, and f is some known function on
some open subset U ⊂ R × R

n, and x′ + dx/dt. For our purposes, x will be real-
valued. Solutions to ODE can be visualized and analysed qualitatively by using a
direction field, which is the vector field V (t, x) = (1, f(t, x)) that gives the slope of a
solution at each point. Integral curves of the direction field correspond to solutions
of the ODE.

A differentiable function x+(t) satisfying

x′
+(t) > f(t, x+(t))

is called a supersolution to (2). Similarly, a differentiable function x−(t) satisfying

x′
−(t) < f(t, x−(t))

is called a subsolution to (2).

Lemma 2.1. Let x+(t), x−(t) be super, sub solutions of the differential equation
x′ = f(t, x) on [t0, T ) respectively. For every solution x(t) on [t0, T ) we have

x(t) < x+(t), t ∈ [t0, T ) whenever x(t0) ≤ x+(t0)

respectively

x−(t) < x(t), t ∈ [t0, T ) whenever x−(t0) ≤ x(t0)

Remark. If one replaces strong inequality by weak inequality in the definitions
of sub and supersolutions, one gets weak inequalities instead of strong ones in the
above lemma.

A problem of the form

(3) x′ = f(t, x), x(t0) = x0

is called an initial value problem, or IVP.
We recall the fundamental local existence-uniqueness and extensibility results.
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Theorem 2.2. Suppose f ∈ C(U,Rn) where U is an open subset of R × R
n and

(t0, x0) ∈ U . If f is locally Lipschitz continuous in the second argument, uniformly
with respect to the first, then there exists a unique local solution x̄(t) ∈ C(I) of the
IVP (3), where I is some interval around t0.

Moreover, if f ∈ Ck(U,Rn), then x̄(t) ∈ Ck+1(I)

Theorem 2.3. Let φ(t) be a solution of the IVP (3) defined on the interval (t−, t+).
Suppose there is a compact subset [t0, t+] × C ⊂ U such that φ(tm) ∈ C for some
sequence tm ∈ [t0, t+) converging to t+ Then there exists an extension to the interval
(t−, t+ + ǫ) for some ǫ > 0.

In particular, if there is such a compact set C for every t+ > 0 (C might depend
on t+), then the solution exists for all t > t0.

The analogous statement holds for an extension to (t− − ǫ, t+)

Remark. The form [t0, t+]×C for the compact set can be relaxed. We can simply
require some compact set K ⊂ U , such that the projection of K onto the t-coordinate
contains [t0, t+], and that (tm, φ(tm)) ∈ K.

The above theorem is an extensibility result. For instance, it guarantees that
if you can solve your ODE locally at any t = t0, and have super and subsolutions
that exist for all t > t0, then your solution extends to all “future times” t > t0.

The following theorem provides estimates for the difference between two solutions
of an ODE. This is a special case of [19, Theorem 2.8].

Theorem 2.4. Suppose f ∈ C(U,Rn), f = f(t, x) is Lipschitz continuous (with
Lipschitz constant L) in the second argument, uniformly with respect to the first. If
x(t), y(t) are solutions of the respective IVPs

x′(t) = f(t, x), x(t0) = x0

y′(t) = f(t, y), y(t0) = y0 ,

then,

|x(t) − y(t)| ≤ |x0 − y0|eL|t−t0|

for as long as both x(t), y(t) are defined.

We also state a basic lemma which will be used to determine whether a given
ODE blows up or not.

Lemma 2.5. Consider the problem

x′ = xθ

x(t0) = x0 > 0 .

Its solution is

x(t) =











x0 + log

(

t

t0

)

when θ = 1

(x1−θ
0 + (1− θ)(t − t0))

1
1−θ when θ 6= 1 .

The solution exists for all t > t0 if θ ≤ 1. It tends to infinity at t = t0 + x0/(θ− 1)
if θ > 1.
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2.2. A PDE regularity lemma. The following result provides higher regularity
of C2-solutions to elliptic PDE. It is a consequence of Schauder’s estimate (see [13,
Lemma 17.16]).

Proposition 2.6. Suppose that u ∈ C2(Ω) satisfies

F (·, u,Du,D2u) = 0 in Ω ,

where F : Γ ⊂ Ω × R × R
n × Sn×n → R is monotone increasing with respect

to the matrix variable. If F ∈ Ck,α(Γ) for some k ≥ 1 and 0 < α < 1, then
u ∈ Ck+2,α(Ω). In particular, if F is smooth, then so is u.

2.3. The rotational translator ODE. For a real-valued C2−function u of a
single real variable, consider the graph of y = u(|x|), where x ∈ R

n. Its unit
normal at a point (x, u(|x|)) is given by

~N =

(

u′
√
1 + u′2

x

|x| ,
−1√
1 + u′2

)

∈ R
n × R

The principal curvatures of this hypersurface are κ1, the curvature of the profile
curve y = u(r), and κi (i = 2, ..., n), the rotational curvatures, which are all the
same. They are given by the equations

κ1 =
u′′

(1 + u′2)3/2

κi =
u′

r
√
1 + u′2

for i = 2, ..., n.

For the flow ∂ ~X
∂t = −f ~N , the equation for the standard translator with unit speed

in the coordinate direction en+1 + (0, ..., 0, 1) ∈ R
n+1 is given by 〈 ~N, en+1〉 = −f ,

(where f is a function of principal curvatures at a point), from which one obtains

(4) f

(

u′′

(1 + u′2)3/2
,

u′

r
√
1 + u′2 , ...,

u′

r
√
1 + u′2

)

=
1√

1 + u′2 .

We reduce the order and simplify notation by setting v + u′ and e + (1, ..., 1) ∈ R
n,

so that

f

(

v′

(1 + v2)3/2
,

v

r
√
1 + v2

e

)

=
1√

1 + v2
.

The function v has the geometric significance of being the gradient of the profile
curve.

Now let f be an admissible speed. Using the α-homogeneity of f , one gets

f

(

v′

(1 + v2)3/2−1/(2α)
,

v

r(1 + v2)1/2−1/(2α)
e

)

= 1 .

Define h(x, y) + f(x, ye). Since f is strictly monotone in each argument, we can
solve for x using a unique function g, in the sense that h(g(y, z), y) = z. In the
same way, we can solve for y using a function g1, i.e. h(x, g1(x, z)) = z. We remark
here that since f is an admissible speed, the implicit function theorem applies and
hence g, g1 are of class C1.

Thus, solving for v′ we get

v′ = (1 + v2)
3
2
− 1

2α g

(

v

r(1 + v2)
1
2
− 1

2α

, 1

)

.
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v

r

β > 1/2

0 < β < 1/2
β < 0

Figure 2. The graph of w
m(1+w2)β

= r

We now set β = 1
2 − 1

2α , so that

(5) v′ = (1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

.

We shall refer to this equation as the Translator ODE. Note that since we seek
bowl-type solitons, we have the initial condition v(0) = u′(0) = 0. The value of
u(0) is arbitrary because the ODE is independent of u, but we can set u(0) = 0 for
convenience, so that our translator has its “tip” at the origin. One recovers u from
v via the formula

(6) u(r) =

∫ r

0

v(ρ)dρ .

2.3.1. Level sets of the expression w
r(1+w2)β

. Let m > 0 be a constant, and let
w

m(1+w2)β = r. Then

(7)
dr

dw
=

1

m

1 + (1− 2β)w2

(1 + w2)1+β

which means r behaves very differently for β > 1/2 and β < 1/2. When β > 1/2,
r is increasing for small values of w and decreasing for large values, which means r
is not invertible. But if β < 1/2, then dr/dw > 0, meaning r is is increasing with
respect to w and hence, so is the inverse function which defines w as a function of
r. Figure 2 illustrates this contrast. We consider only the latter case, since this
corresponds to α > 0.

To make the notion of asymptotics precise, suppose f, g are real valued functions
of a real variable t. We say f(t) ≍ g(t) as t → ∞ if f(t)/g(t) → C for some constant

C 6= 0. Then in our level set equation, r(w) ≍ w1−2β

m = w1/α

m . Therefore,

(8) w(r) ≍ (mr)α
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And by equation (7),

dw

dr
(r) ≍ mαw2β ≍ mαr2αβ = mαrα−1

so that

(9)
dw

dr
≍ rα−1 .

For subsequent reference, we collect the following facts about the relation

w

m(1 + w2)β
= r.

The hypothesis β < 1/2 is used for these lemmas.

Lemma 2.7. For constant m > 0, r is increasing with respect to w.

Lemma 2.8. For a fixed r > 0, if we regard m as a function of w, it is increasing
with respect to w.

Proof. This is due to the symmetry of r and m. �

2.3.2. The domain of g(·, 1). Note that the values of a homogeneous function f
of n variables are completely determined by the values of f on Sn−1. Thus, our
admissible speeds are completely determined in the positive cone Γn

+ by their values
on Sn−1 ∩ Γn

+, the points on the unit sphere that have all positive coordinates.
Further, since in our setting all inputs of f but the first are equal, it suffices to
consider points in Sn−1 ∩Γn

+ of the form (x, ye), that is, (x, y) ∈ Γ2
+ and x2 +(n−

1)y2 = 1. So we may describe y as a function of x: y(x) =
√

1−x2

n−1 . Now we can

describe the level set f(x, ye) = 1 as

E =

{

1

f(x, y(x)e)1/α
(x, y(x)) : 0 < x < 1

}

⊂ Γ2
+.

From this point of view, we see that E is a connected set, as it is the continuous
image of an interval. From another point of view, E can be identified with the graph
of the function g(·, 1): it is the set of points (g(y, 1), y) such that y is in the domain
D ⊂ R of g(·, 1). D is the projection of E onto the y-coordinate, and hence it is
connected. Now, due to the implicit function theorem, the domain of g(·, 1) is an
open interval, as we already know it is connected. Since limx→0 y(x) = 1/

√
n− 1,

we see that, in the degenerate case, D is unbounded above. In the nondegenerate
case, we see that D is bounded above; here we find that supD = 1/f(0, e)1/α, and
we can extend g continuously by defining g(supD, 1) = 0.

2.4. Three examples. We will illustrate the theorems with three examples, namely,
flows by the harmonic mean curvature, scalar curvature, and powers of the Gauss
curvature. These are defined, respectively, as (Σn

i=1κ
−1
i )−1,

√

Σi<j2κiκj , and K
α
n

where K = Πn
1κi is the Gauss curvature. The former two are both 1-homogeneous

functions, while the Gauss curvature flows can take any homogeneity α > 0. We
note here that we are using a fact that will be proved in the next section, which is
that (5) has a unique solution on some maximal interval [0, R), 0 < R ≤ ∞. These
examples illustrate the motivation behind the formulation of all theorems of this
paper.
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2.4.1. Harmonic mean curvature flow. Let us first study the harmonic mean cur-
vature flow for n ≥ 2. One finds that (5) becomes

(10) v′ =
v

v − (n− 1)r
(1 + v2) .

Observe that the function v− = nr is an ODE subsolution due to the following
calculation:

v′− = n ≤ nr

nr − (n− 1)r
(1 + n2r2) .

Now, since the solution v satisfies v(0) = v−(0) = 0, we have v ≥ v− = nr for as
long as v exists. We then deduce that

1 ≤ v

v − (n− 1)r
≤ n .

Therefore

1 ≤ v′

1 + v2
≤ n

=⇒ r ≤ tan−1 v ≤ nr

=⇒ tan(r) ≤ v ≤ tan(nr) .

Using (6) to recover u, we see that the bowl-type soliton y = u(|x|) is defined on
a ball BR where R ∈ [ π

2n ,
π
2 ]. We also see it is asymptotic to the cylinder ∂BR ×R

since v, v′ ↑ ∞ as r ↑ R, and therefore so do u, u′ as |x| ↑ R.

2.4.2. Scalar curvature flow. When n ≥ 3, the ODE corresponding to the scalar
curvature flow is

(11) v′ = (1 + v2)
1− (n− 1)(n− 2)(v/r)2

2(n− 1)v/r
+ (1 + v2)φ(v/r).

We claim that the solution is entire. Indeed, define v+ +
r√

(n−1)(n−2)
. Then

v′+ = 1√
(n−1)(n−2)

> 0 = (1 + v2+)φ(v+/r), so that v+ is a supersolution. By a

similar calculation, v− +
r√

n(n−1)
is a subsolution. Both these are defined for all

r ≥ 0. Therefore by Theorem 2.3, v is defined for r ≥ 0. Recovering u using (6),
we see that the bowl-type soliton is entire.

2.4.3. Gauss curvature flows. The examples we provide here have a speed function
of the form K

α
n , where K is the Gauss curvature, i.e. f(x1, ..., xn) = (x1 · ... ·xn)

α
n ,

which is an α-homogeneous function. Then

f(x, ye) = z

⇐⇒ (xyn−1)α/n = z

⇐⇒ x =
z

n
α

yn−1
.

Thus the resulting ODE is of the form

(12) v′ =
rn−1(1 + v2)(n+2)/2−1/(2α/n)

vn−1

This equation is separable, and by comparing with Lemma 2.5, one sees that v
blows up at r = R for some finite R precisely when α/n > 1/2, and v exists for all
r when α/n ≤ 1/2. Thus rotational translators of Kα/n flows exists over bounded
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domains and are asymptotic to a cylinder precisely when α > n/2 and are entire
when α ≤ n/2.

3. Existence and uniqueness

Our aim is to show that there exists a unique solution to the problem

v′ = (1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

,

v(0) = 0

(13)

on a maximal interval [0, R), 0 < R ≤ ∞, which is of class C1([0, R)). Note that
this is non-trivial since the problem is singular at r = 0.

We shall obtain a solution to (13) as the limit of a sequence of solutions vn to
the approximating problems

v′n = (1 + v2n)
1+βg

(

vn
r(1 + v2n)

β
, 1

)

,

vn(rn) = an

with initial values (rn, an) → (0, 0).
Our approach is to solve the equation near the origin on some small interval

[0, δ] where δ will be determined later. We first obtain a subsolution and some
supersolutions to the ODE which will serve as uniform lower and upper barriers
on [0, δ]. Note that if v satisfies the initial condition and admits a (one-sided)
derivative at r = 0, then its derivative must satisfy v′(0) = 1/f(1, ..., 1)1/α. We
verify this by allowing r → 0 in (13) and observe the following:

v′(0) = g(v′(0), 1)

⇐⇒ f(v′(0), v′(0)e) = 1

⇐⇒ v′(0)αf(1, ..., 1) = 1

⇐⇒ v′(0) = 1/f(1, ..., 1)1/α .

So we define γ + 1/f(1, ..., 1)1/α. Then γ is the unique solution to γ = g(γ, 1) due
to the above calculation.

Now define a function w(r) implicitly by the relation

(14)
w

r(1 + w2)β
= γ .

Note that w is well-defined by Lemma 2.7.

Proposition 3.1. The function w as defined in (14) is a subsolution to (13).

Proof. Due to (7),

w′ = γ
(1 + w2)1+β

1 + (1 − 2β)w2

= g(γ, 1)
(1 + w2)1+β

1 + (1− 2β)w2

≤ (1 + w2)1+βg(γ, 1)

= (1 + w2)1+βg

(

w

r(1 + w2)β
, 1

)

. �



12 SATHYANARAYANAN RENGASWAMI

Given that the equation f(x, γe) = 1 has a solution x = γ, the implicit function
theorem now guarantees that the equation f(x, ye) = 1 can be solved for x when
y ∈ [γe−θ, γeθ], for some θ > 0. In other words, [γe−θ, γeθ] is in the domain of
g(·, 1). Given ǫ ∈ [0, θ], let γǫ = γeǫ, and define wǫ(r) using

wǫ

r(1+w2
ǫ )

β = γǫ.

Proposition 3.2. For each ǫ > 0, there exists rǫ > 0 such that wǫ is a supersolution
to (13) on (0, rǫ).

Proof. Note that

w′
ǫ = γǫ

(1 + w2
ǫ )

1+β

1 + (1− 2β)w2
ǫ

and

(1 + w2
ǫ )

1+βg

(

wǫ

r(1 + w2
ǫ )

β
, 1

)

= (1 + w2
ǫ )

1+βg(γǫ, 1) .

Therefore,

w′
ǫ > (1 + w2

ǫ )
1+βg

(

wǫ

r(1 + w2
ǫ )

β
, 1

)

⇐⇒ γǫ
(1 + w2

ǫ )
1+β

1 + (1− 2β)w2
> (1 + w2

ǫ )
1+βg(γǫ, 1)

⇐⇒ γeǫ

1 + (1 − 2β)w2
ǫ

> g(γeǫ, 1)

⇐⇒ γαeαǫf

(

1

1 + (1 − 2β)w2
ǫ

, e

)

> 1

⇐⇒ f

(

1

1 + (1− 2β)w2
ǫ

, e

)

>
f(1, e)

eαǫ
.

The above inequality holds when r = 0, hence it holds by continuity on some
[0, rǫ], where rǫ might depend on ǫ. �

It is important to note that, by Lemma 2.8, for any fixed r, wǫ(r) is monotone
increasing with respect to ǫ. In particular, wθ ≥ w0.

Now we construct a family of functions that converge to a solution of our ODE
on [0, rθ]. For each n > 1/rθ, consider the continuous function vn defined as follows.

• vn
r(1+v2

n)
β = γ on [0, 1/n]

• vn obeys the ODE v′n = (1 + v2n)
1+βg

(

vn
r(1+v2

n)
β , 1
)

on (1/n, rθ].

The initial data for the ODE is of course vn(1/n), which is implicitly defined
by the first relation. Note that vn is well-defined on the interval (1/n, rθ] due to
Theorem 2.3, where the compact set can be taken to be

K =

{

(r, w) ∈ R
2 : γ ≤ w

r(1 + w2)β
≤ γ1, 0 < r ≤ rθ

}

∪ {(0, 0)} .
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wθ

w0

K

r

w

Now let us define a constant C as follows. First, we define the following constants:

C1 + sup

{

(1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

: (r, v) ∈ K − {(0, 0)}
}

C2 + sup

{

2βv(1 + v2)βg

(

v

r(1 + v2)β
, 1

)

: (r, v) ∈ K − {(0, 0)}
}

C3 + max{C1, C2}
C4 + eC3rθ

C1, C2 are finite due to the fact that v, v
r(1+v2)β are bounded in K−{(0, 0)}. Hence

all of the constants above are finite.
Now define C + max{Ci : i = 1, ..., 4}.

Proposition 3.3. The sequence of functions {vn} converges uniformly on (0, rθ].

Proof. For m > n, we apply the mean value theorem to obtain the following esti-
mate:

vm(1/n) ≤ vm(1/m) + (1/n− 1/m) sup
r∈[1/m,1/n]

v′m(r)

≤ vm(1/m) + (1/n)C1 .

Thus,

(15) vm(1/n)− vn(1/n) ≤ vm(1/m)− vn(1/n) + C1/n .

Now, from the definition of vn, vn(1/n) = w(1/n) and vm(1/m) = w(1/m),
where w is given by w

r(1+w2)β
= γ. Since w is monotone increasing in r,

vm(1/m)− vn(1/n) ≤ 0 .

Thus (15) becomes

vm(1/n)− vn(1/n) ≤ C1/n .
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Now we estimate vm(r) − vn(r) for r ∈ (1/n, rθ]. Regarding the right hand side
of (5) as a function of v and applying the mean value theorem, we get

v′m(r)− v′n(r) = (1 + v2m)1+βg

(

vm
r(1 + v2m)β

, 1

)

− (1 + v2n)
1+βg

(

vn
r(1 + v2n)

β
, 1

)

≤ (vm − vn) sup
v∈[vn(r),vm(r)]

{

2βv(1 + v2)βg

(

v

r(1 + v2)β
, 1

)

+(1 + v2)gy

(

v

r(1 + v2)β
, 1

)

(1 + (1− 2β)v2)

r(1 + v2)β+1

}

≤ (vm − vn) sup
v∈[vn(r),vm(r)]

{

2βv(1 + v2)βg

(

v

r(1 + v2)β
, 1

)}

≤ C2(vm − vn) .

We used the fact that g is decreasing in the first slot in the penultimate step.
Dividing by the positive quantity vm − vn and integrating on [1/n, r],

vm(r) − vn(r) ≤ (vm(1/n)− vn(1/n))e
C2(r−1/n)

≤ C2/n .

The claim follows by letting n → ∞. �

Therefore vn converges uniformly to a continuous function on (0, rθ). Since the
sequence of functions {vn} is uniformly bounded, v′n has a uniformly continuous
dependence on vn, and hence v′n converges uniformly as well. Thus we have C1-
convergence of vn to some differentiable function v on (0, rθ). In particular, v
satisfies (5).

Proposition 3.4. The limit function v can be extended continuously to r = 0.
Moreover, the extended function is differentiable at r = 0.

Proof. Recall that since we have a subsolution w on (0, rθ) and supersolutions wǫ =
on (0, rǫ),

(16) γr ≤ vn
(1 + v2n)

β
≤ γeǫr on (0, rǫ).

Passing to the limit, we have

(17) γr ≤ v

(1 + v2)β
≤ γeǫr on (0, rǫ).

Letting r → 0, we see that v(0) = 0. Also, dividing the same equation by r, we can
evaluate v′(0) = limr→0 v/r.

γ ≤ v/r

(1 + v2)β
≤ γeǫ on (0, rǫ).

Letting ǫ → 0, we get
v′(0) = γ .

Now we show differentiability at r = 0. Estimating equation (13) from above
and below using (17),

(18) (1 + w2)g(γeǫ, 1) ≤ v′(r) ≤ (1 + w2
ǫ )g(γ, 1) .

Letting ǫ → 0,

(19) lim
r→0

v′(r) = g(γ, 1) = γ = v′(0) .
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This completes the proof. �

Regarding the question of uniqueness, we are only interested in solutions v of
class C1 up to the origin, because these correspond to C2-solutions u of (4).

Proposition 3.5. The solution v as obtained above is the unique C1-solution to
the initial value problem (13).

Proof. We first show uniqueness near the origin. The equation f(x, ye) = 1 is
solvable for x when y = γ. Thus by the implicit function theorem, there exists
ǫ > 0 such that this equation is solvable for y ∈ (γe−ǫ, γeǫ). Suppose that v1, v2 are
two solutions, with initial conditions v1(0) = v2(0) = 0. Now, since both solutions
are C1 up to the origin, v′1(0) = v′2(0) = γ, and hence there exists some δ > 0 such
that the graphs of v1, v2 are contained in the compact set K ′ + {(r, v) : γe−ǫr ≤
v ≤ γeǫr, 0 ≤ r ≤ δ} The slope field is nonsingular in K ′ − {(0, 0)}, and hence
integral curves do not intersect. Thus without loss of generality, we may assume

v1 > v2 in K ′−{0}. Define C′ = sup(r,v)∈K′−{(0,0)}

{

2βv(1 + v2)βg
(

v
r(1+v2)β

, 1
)}

.

Now let δ′, r be real numbers such that 0 < δ′ ≤ r ≤ δ. By an argument similar to
Proposition 3.3,

|v2(r) − v1(r)| ≤ C′|v2(δ′)− v1(δ
′)|

Since v1, v2 are continuous and agree at r = 0, letting δ′ → 0 shows that the
solutions agree on [0, δ]. This gives local uniqueness near the origin. Now by
standard ODE theory, the solutions agree for as long as they are both defined. �

Due to Theorems 2.2 and 2.3, we have proved the following.

Lemma 3.6. The initial value problem (13) has a unique solution v defined on
some maximal interval [0, R), where 0 < R ≤ ∞. If f is of class Ck, then v is of
class Ck+1 everywhere except possibly r = 0. Moreover, v and v′ are continuous up
to r = 0, with v(0) = 0 and v′(0) = γ.

From this, we recover u using the formula u(r) =
∫ r

0 v(ρ)dρ. Note that u is C2

at r = 0. Thus we have the following existence result for bowl-type solitons.

Theorem 3.7. Let f be an admissible speed. There exists a unique bowl-type
soliton with velocity en+1 correspinding to it. The bowl-type soliton is the graph of
a function u : BR → R, where 0 < R ≤ ∞. If f is of class Ck, then u is of class
Ck+2 everywhere except possibly the origin, and at least C2 at the origin.

This proves, in particular, the first part of Theorem 1.1.

4. Smoothness at the origin

For higher regularity at the origin, we apply the PDE lemma (Proposition 2.6).
So let us cast our bowl-type soliton (near 0) as the solution to a (fully nonlinear)
elliptic PDE.

Recall that, for a graph M = graphu, the component matrix of the Weingarten
tensor is given by

W = g−1 · II ,
where

II =
D2u

√

1 + |Du|2
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is the component matrix of the second fundamental form and

g−1 = I−Du⊗Du

1 + |Du|2

is the component matrix of the cometric. Since W is not in general a symmetric
matrix, we consider instead the matrix [21]

W̃ + P · II ·P ,

where P , a square root of g−1, is given by

P = I− Du⊗Du
√

1 + |Du|2
(

1 +
√

1 + |Du|2
) .

Note that W̃ is symmetric and has the same eigenvalues as W . Thus, if M is a
translating solution to the flow by speed f , then u is a solution to the equation

(20) − f̂
(

Du,D2u
)

= − 1
√

1 + |Du|2
,

where f̂ : Rn×Sn×n
+ → R (Sn×n

+ are the positive definite symmetric n×n matrices)
is defined by

f̂(p, r) +

f

((

I− p⊗ p
√

1 + |p|2
(

1 +
√

1 + |p|2
)

)

· r
√

1 + |p|2
·
(

I− p⊗ p
√

1 + |p|2
(

1 +
√

1 + |p|2
)

))

,

where we treat f as a function of a symmetric matrix Z by evaluating it on the
eigenvalues z1, . . . , zn of Z.

Observe that f̂ is of the same smoothness class as f and
(

∂f̂

∂rij

)

(Du,D2u)

=

(

∂f

∂rpq

)

(P ·II ·P )

PpiPqj

=⇒ ∂f̂

∂rij
ξiξj =

∂f

∂rpq
PpiPqjξiξj > 0

for all (ξ1, ..., ξn) ∈ R
n − {0}, because P is non-degenerate and the eigenvalues of

the matrix
(

∂f
∂rpq

)

, which are equal to fzi , i = 1, ..., n, are positive by hypothesis.

This implies that (20) is elliptic
Finally, since we have proved that the solution u corresponding to our bowl-type

soliton is of class C2, Proposition 2.6 yields the following improvement of Theorem
3.7.

Theorem 4.1. There exists a unique bowl-type soliton for every admissible speed
f . The bowl-type soliton is the graph of a function u : BR → R, where 0 < R ≤ ∞.
If f is of class Ck,α, then u is of class Ck+2,α. In particular, if f is smooth, then
so is u.

This proves the second part of Theorem 1.1.
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5. Low homogeneities

Recall that regardless of α, (3.1) shows that the function v− implicitly defined
by v−

r(1+v2
−
)β

= γ is a subsolution to the translator ODE. From §2.3.1 we infer that

the solution v satisfies v
r(1+v2)β

≥ γ > 0. In addition, v ≥ 1 for sufficiently large r.

Now if α ≤ 1/2, we have that for sufficiently large r (such that v ≥ 1),

v′ ≤ γ(1 + v2)1+β

≤ γ
√

1 + v2

≤
√
2γv .

By comparing with Lemma 2.5, we see that the corresponding bowl-type soliton is
entire.

This proves Theorem 1.2.

6. Degenerate speeds

We only need to discuss what happens if α > 1/2. We formulate the degeneracy
condition f(0, e) = 0 as lims→0 f(s, e) = 0, as f may be undefined when one of
its inputs is zero. Note that in the equation f(x, ye) = 1, x is decreasing with
respect to y. If x → 0 as y → y0 < ∞, then limy→y0

f(0, ye) = 1 which violates our
degeneracy hypothesis that f(0, e) = 0. Thus L + limy→∞ x = limy→∞ g(y, 1) ≥ 0

6.1. The L > 0 case. If L > 0, we have the inequality

v′ > (1 + v2)1+βL

> Lv2+2β .

Comparing with Lemma 2.5 shows that solutions are defined on bounded domains
provided β > −1/2, i.e. α > 1/2. This explains what we observed in the harmonic
mean curvature case, and proves Theorem 1.3.

6.2. The L = 0 case. Again we analyse the case of α > 1/2. Here it turns out that
whether the bowl-type soliton is entire or nonentire depends on the the asymptotics
of g(y, 1) as y → ∞.

First, we note that since the function v−(r) implicitly defined by v−
r(1+v2

−
)β

= γ

is a subsolution, the solution v satisfies v ≥ v−, and hence v
r(1+v2)β ≥ γ > 0. We

claim that v
r(1+v2)β is in fact unbounded. We prove this by contradiction. Suppose

this is not the case. Then there exists M > 0 such that v
r(1+v2)β

≤ M . This

means v(r) exists for all r. Define g(M, 1) + ǫ. Then, since L = 0 and g(·, 1) is
strictly decreasing, ǫ > 0. Since g is monotone decreasing in the first argument,

g
(

v
r(1+v2)β

, 1
)

≥ ǫ. This means

v′ ≥ (1 + v2)1+βǫ

but since α > 1/2 (i.e. β > −1/2), this equation blows up at some finite R, leading
to a contradiction. This proves our claim. Indeed more is true: given any N > 0,
there exists r1 > 0 such that v

r(1+v2)β
≥ N for r ≥ r1. This is because of the

following lemma which holds for both degenerate and nondegenerate speeds f . The
“≍” symbol used below,, which is an equivalence relation on the asymptotics of two
functions, is defined in §2.3.1.



18 SATHYANARAYANAN RENGASWAMI

Lemma 6.1. Suppose N > 0 and that g(N, 1) > 0. Then the function wN de-
fined implicitly by wN

r(1+w2
N )β

= N is a subsolution to the translator ODE (5) for

sufficiently large r.

Proof. For large r, by (9) we have w′
N ≍ rα−1. On the other hand, the asymptotics

of the right hand side of the ODE is

(1 + w2
N )1+βg

(

wN

r(1 + w2
N )β

, 1

)

= ǫN(1 + w2
N )1+β

≍ (r2α)1+β

= (r2α)3/2−1/2α

= r3α−1

where ǫN + g(N, 1) > 0. Thus for sufficiently large r, wN is a subsolution to
(5). �

Now we can consider the asymptotics of g(y, 1) as y → ∞.
Suppose g(y, 1) = O(y1−2α), i.e. there exists a constant C > 0 such that g(y, 1) ≤

Cy1−2α for sufficiently large y. Then for sufficiently large values of r,

v′ = (1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

≤ C(1 + v2)1+β

(

r(1 + v2)β

v

)2α−1

≤ C′vr2α−1 .

Now, by comparing this to Lemma 2.5 we see that v exists for all r > 0. In this
case, the bowl-type soliton is entire.

In contrast with the previous case, now suppose there exists C > 0 and some
k < 2α− 1 such that g(y, 1) > Cy−k. Define the positive number ǫ by the relation

ǫ
1−2β = 2α− 1− k. Then,

v′ = (1 + v2)1+βg

(

v

r(1 + v2)β
, 1

)

≥ C(1 + v2)1+β

(

r(1 + v2)β

v

)2α−1−ǫ/(1−2β)

≥ C′v1+ǫ .

Comparing this to Lemma 2.5, one sees that the solution v blows up at some finite
r = R. In this case, the bowl-type soliton exists over the ball BR.

This proves Theorem 1.4.

Remark. As mentioned in the introduction, this analysis leaves out the case when
x = O(y−k) for k < 2α− 1 but not for k = 2α− 1. This is because it is not possible
to decide just using this condition in this boundary case whether the solution is
entire or over a bounded domain. Consider for p > 0 the differential equation
v′ = v(log v)p with initial condition v(r0) = v0 > 1. The right hand side is O(vθ)
for θ > 1 but not θ = 1. This equation blows up at some finite r if and only if
p > 1. The author suspects that a more general integrability condition on g(·, 1)
could be used to provide a complete classification, but since typical applications
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involve algebraic functions of the principal curvatures and transcendental functions
are extremely rare, the criteria provided here are more readily applicable.

7. Nondegenerate speeds

Finally, we prove the asymptotic expansion for bowl-type solitons of flows by
nondegenerate speeds.

7.1. Entireness. As done in previous section, we can extend f to the boundary
∂Γn

+ of the positive cone by taking limits. Suppose f(0, e) > 0 as in Theorem

1.1. Let γ′ + f(0, e). Then g1(0, 1) = 1/(γ′)1/α is finite as well (Refer to §2.3 for
the definition of g1.) Let γ+ + g1(0, 1). Then we have that g1(0, 1) = γ+ ⇐⇒
g(γ+, 1) = 0. Now, the function v+(r) defined by v+

r(1+v2
+
)β

= γ+ is precisely where

the slope field vanishes. Also we see that v+ is a supersolution to (5) because

v′+ > 0

= (1 + v2+)
1+βg

(

v+
r(1 + v2+)

β
, 1

)

.

We showed in Proposition 3.1 that the function v−(r) defined by v−
r(1+v2

−
)β

= γ,

where γ + 1/f(1, ..., 1)1/α, is a subsolution to (5). Since we have subsolution and a
supersolution, both defined on [0,∞), it follows from Theorem 2.3 that the solution
v is also defined on [0,∞). Using the formula u(r) =

∫ r

0 v(ρ)dρ, we see that u is
defined on [0,∞). Therefore we have the following theorem.

Theorem 7.1. If f(0, e) > 0, then the corresponding bowl-type soliton is entire.

7.2. Asymptotics. Let v be the solution to (13). We prove the following

Proposition 7.2. Suppose f is a nondegenerate speed. Let v be the solution to
(13). v

r(1+v2)β → γ+ as r → ∞

Proof. Let ǫ > 0, r0 > 0. We claim that there exists r1 > r0 such that v(r1)
r1(1+v(r1)2)β

≥
(1− ǫ)γ+.

Suppose this was not the case, i.e. for some ǫ > 0 we have v
r(1+v2)β

< (1− ǫ)γ+

for all r > r0 . Note that since g is decreasing in the first slot, g
(

v
r(1+v2)β

, 1
)

>

g((1− ǫ)γ+, 1) + ǫ′. Then we have

v′ > (1 + v2)1+βǫ′ > (v2)1+βǫ′ = v3−1/αǫ′

which implies that

(21) v1/α−3v′ > ǫ′ .

If α > 1/2, then 3− 1/α > 1 so that v blows up at some finite R. So we focus on
the case that α ∈ (0, 1/2]. Let r0 be any positive number, and define v0 + v(r0).

In case α = 1/2, the differential equality (21) becomes

v′/v > ǫ′ =⇒ v > v0e
r−r0 .

If α ∈ (0, 1/2) then the differential inequality becomes
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(v1/α−2)′

1/α− 2
> ǫ′

=⇒ v(r)1/α−2 − v
1/α−2
0 > (1/α− 2)ǫ′(r − r0)

=⇒ v > [C + C′(r − r0)]
1

1/α−2 ,

where C = v
1/α−2
0 , C′ = (1/α− 2)ǫ′.

Note that

1

1/α− 2
> α ⇐⇒ 1 > α(1/α− 2) = 1− 2α ⇐⇒ α > 0

provided α < 1/2.
We have already shown that v

r(1+v2)β = (1 − ǫ)γ+ implies v grows like rα. This

is in contradiction to what we have just shown, which is that v grows like r1/α−2

when α ∈ (0, 1/2) and like er when α = 1/2, both of which are strictly faster than
rα.

Having proved this, now we conclude using Lemma 6.1 that for sufficiently large
r, v

r(1+v2)β
stays above (1− ǫ)γ+.

This means that our solution v exceeds w as defined here, and due to upward
monotonicity of the expression w

r(1+w2)β
with respect to w, we infer that

v

r(1 + v2)β
>

w

r(1 + w2)β
= (1− ǫ)γ+

The claim follows since ǫ is arbitrary. �

Therefore, we have that v = rα

f(0,e)+o(rα). Integrating, we see that the bowl-type

soliton has the following asymptotics as |x| → ∞:

u(|x|) = |x|α+1

(α + 1)f(0, e)
+ o(|x|α+1) .

This proves the asymptotic expansion that was asserted in Theorem 1.1.

8. Convexity of solutions

We show here that the bowl-type solitons that we have constructed are con-
vex. Observe that for any admissible speed function, the function v−(r) defined by

v−
r(1+v2

−
)β

= γ, where γ + 1/f(1, ..., 1)1/α is a subsolution. For degenerate speeds,

limy→∞ g(y, 1) ≥ 0 and for nondegenerate speeds the function v+(r) defined by
v+

r(1+v2
+
)β

= γ+, where γ+ + g1(0, 1), is a supersolution. Therefore, for our solution

v, the expression g
(

v
r(1+v2)β

, 1
)

is positive in both the degenerate and nondegener-

ate cases for the following reason: v is below this supersolution in the nondegenerate
case, and in the degenerate case, g(·, 1) is positive for all positive inputs. Therefore
in either case, the solution satisfies v′ = (1 + v2)1+βg

(

v
r(1+v2)β

, 1
)

> 0, which

implies that u′′ > 0 for the profile curve u. Thus, κ1 = u′′

(1+u′2)3/2
. The remaining

curvatures κi =
u′

r
√
1+u′2

are also positive because our subsolution guarantees that

u′ = v ≥ v>0. We conclude that the bowl-type solitons are convex.
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